Optimizing biogas and biofertilizer production from abundant Moroccan industrial organic wastes by the formulation and the use of a fungal inoculum

Document Type : Research Paper

Authors

1 Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA URAC36, 20650 Morocco

2 Higher Institutes of the Nursing Professions and Techniques of Health ISPITS Casablanca 22500, Morocco

Abstract

In this study, the production of biogas using two fungal strains, Aspergillus niger and Saccharomyces cerevisiae, was studied. In fact, three different waste components consisting of sardine waste (SW), potato peels (PP), and poultry waste (PW) were successfully combined in mesophilic bio-digestion with fungal strains to enhance the production capacities of gas. This work also exhibited the effect of the formulation using a 10-point simplex-centroid mixture design strategy on biogas optimization. The results showed that 12 days was sufficient to achieve stability in mesophilic bio-digestion. This paper proved that the use of fungal inoculum with the mixture of organic and agro-industrial wastes, balanced in chemical elements necessary for cell growth (M7: 66% SW;17% PP;17% PW), led to higher production capacities of biogas. Therefore, the germination and fertilization tests carried out by the digestates resulting from these mixtures showed that they did not inhibit growth and proved to be suitable to improve the crop yields of bell peppers. 

Keywords

Main Subjects


[1] Shi, C.,Wang, K., Zheng, M., Liu, Y., Ma, J., Li, K. (2021). The efficiencies and capacities of carbon conversion in fruit and vegetable waste two-phase anaerobic digestion: Ethanol-path vs. butyrate-path. Waste management, 126, 737-746.
[2] Yu, Q., Yang, Y., Wang, M., Zhu, Y., Sun, C., Zhang, Y., Zhao, Z. (2021). Enhancing anaerobic digestion of kitchen wastes via combining ethanol-type fermentation with magnetite: Potential for stimulating secretion of extracellular polymeric substances. Waste management, 127, 10-17.
[3] Mayer, F., Bhandari, R., Gäth, S. A. (2021). Life cycle assessment on the treatment of organic waste streams by anaerobic digestion, hydrothermal carbonization and incineration. Waste management, 130, 93-106.‏
[4] Yan, B., Yan, J., Li, Y., Qin, Y., Yang, L. (2021). Spatial distribution of biogas potential, utilization ratio and development potential of biogas from agricultural waste in China. Journal of cleaner production, 292, 126077.
[5] Yaqoob, H., Teoh, Y. H., Ud Din, Z., Sabah, N. U., Jamil, M. A., Mujtaba, M. A., Abid, A. (2021). The potential of sustainable biogas production from biomass waste for power generation in Pakistan. Journal of cleaner production, 307, 127250.
[6] United Nations environment program (2021). Food waste index report 2021. Nairobi.
[7] Maldaner, L., Wagner-Riddle, C., VanderZaag, A. C., Gordon, R., Duke, C. (2018). Methane emissions from storage of digestate at a dairy manure biogas facility. Agricultural and forest meteorology, 258, 96-107.
[8] Vergote, T., Vanrolleghem, W., Van der Heyden, C., De Dobberlaere, A., Buysse, J., Meers, E., Volcke, E.I.P. (2019). Volcke Model-based analysis of greenhouse gas emission reduction potential through farm-scale digestion. Biosystems engineering, 181, 157-172.
[9] Tait, S., Harris, P. W., McCabe, B. K. (2021). Biogas recovery by anaerobic digestion of Australian agro-industry waste: A review. Journal of cleaner production, 299, 126876
[10] Taiek, T., Boutaleb, N., Bahlaouan, B., El Jaafari, A., Khrouz, H., Safi, A., El Antri, S. (2014). Valorisation de déchets de poisson alliés à des rejets brassicoles en vue d’obtenir un biofertilisant. Déchets sciences and techniques, 68, 24-30.
[11] Lakhal, D., Boutaleb, N., Bahlaouan, B., Taeik, T., Fathi, A., Mekouar, M., Abouakil, N., Lazar, S., Elantri, S. (2017). Mixture Experimental Design in the Development of a Bio Fertilizer from Fish Waste, Molasses and Scum.Int. International journal of engineering research and technology, 6, 588-94.
[12] Li, F., Cheng, S., Yu, H., Yang, D. (2016). Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. Journal of cleaner production, 126, 451–460.
[13] Kazemi-Bonchenari, M., Alizadeh, A., Javadi, L., Zohrevand, M., Odongo, N. E., Salem, A. Z. M. (2017). Use of poultry pre-cooked slaughterhouse waste as ruminant feed to prevent environmental pollution. Journal of cleaner production, 145, 151-156,
[14] Gohil, A., Budholiya, S., Mohan, C. G., Prakash, R. (2021).Utilization of poultry waste as a source of biogas production. Materials today: Proceedings, 45, 783-787.
[15] Chohan, N. A., Aruwajoye, G. S., Sewsynker-Sukai, Y., Gueguim Kana, E. B. (2019). Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment. Renewable energy, 146, 1031-1040.
[16] Shekhar, C., Jaiswal, A., Ji, G., Prakash, R. (2021). Ethanol extract of waste potato peels for corrosion inhibition of low carbon steel in chloride medium. Materials today: proceedings, 44, 2267-2272.
[17] Fathi, A., Boutaleb, N., Bahlaouan, B., Bennani, M., Lazar, S., El Antri, S. (2021). Filamentous fungi and natural supports as a carrier in moving bed biofilmreactors for ecological treatment of halieutic industrial effluent. Desalination and water treatment, 237, 37-44.
[18] Taiek, T., Boutaleb, B., Bahlaouan, B., EL Jaafari, A, Letilly, V., Sire, O., EL antri, S. (2014a). Biotransformation de déchets halieutiques au Maroc: Essais de production d’un fertilisant biologique. Techniques sciences methodes, 11, 158-171.
[19] Hadidi, M., Bahlaouan, B., Assaba, S., Ozi, F. Z., Fathi, A., El Antri, S., Boutaleb, N. (2020). Optimisation de la production du biogaz par les plans de mélanges de déchets agro-industriels et biofertilisation par les résidus de codigestion. Techniques sciences methodes, 10, 53-66.
[20] Redel-Macías, M. D., Pinzi. S., Leiva-Candia, D. E., López, I., Dorado, M. P. (2017). Ternary blends of diesel fuel oxygenated with ethanol and castor oil for diesel engines. Energy procedia, 142, 855-60.
[21] Kim, J. K., Dao, V. T., Kong, I. S., Lee, H. H. (2010). Identification and characterization of microorganisms from earthworm viscera for the conversion of fish wastes into liquid fertilizer. Bioresource technology, 101, 5131-5136.
[22] Gao, M., Zhang, S., Ma, X., Guan, W., Song, N., Wang, Q., Wu, C. (2020). Effect of yeast addition on the biogas production performance of a food waste anaerobic digestion system. Royal society open science, 7, 200443.
[23] Battista, F., Fino, D., Erriquens, F., Mancini, G., Ruggeri, B. (2015). Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations. Renewable energy, 81, 71-77.
[24] Helenas Perin, J. K., Biesdorf Borth, P. L., Torrecilhas, A. R., Santana da Cunha, L., Kuroda, E. K., Fernandes, F. (2020). Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. Journal of cleaner production, 272, 123130.
[25] Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., Hubert. R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and sustainable energy reviews, 80, 756-764.
[26] Wang, X., Lu, X., Li, F., Yang, G. (2014). Effects of temperature and Carbon-Nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PloS ONE, 9(5), e97265.
[27] Waltham, B., Örmeci, B. (2020). Fluorescence intensity, conductivity, and UV–vis absorbance as surrogate parameters for real-time monitoring of anaerobic digestion of wastewater sludge. Journal of water process engineering, 37, 101395.
[28] Moller, K., Stinner, W., Deuker, A., Leithold, G. (2008). Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutrient cycling in agroecosystems, 82(3), 209-232.
[29] Möller, K., Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in life sciences, 12(3), 242–257.
[30] Bachmann, S., Wentzel, S., Eichler‐Löbermann, B. (2011). Codigested dairy slurry as a phosphorus and nitrogen source for Zea mays L. and Amaranthus cruentus L. Journal of plant nutrition and soil science, 174(6), 908-915.
[31] Alburquerque, J. A., de la Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad, M., Pilar Bernal, M. (2012). Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass and bioenergy, 40, 181-189.
[32] Möller, K., Stinner, W. (2010). Effects of organic wastes digestion for biogas production on mineral nutrient availability of biogas effluents. Nutrient cycling in agroecosystems, 87(3), 395–413.
[33] Hartmann, H., Angelidaki, I., Ahring, B. K. (2001). Anaerobic digestion of the organic fraction of municipal solid waste with recirculation of process water. 9th world congress of anaerobic digestion antwerpen Belgium. September, 301-303.
[34] Jędrczak, A., Suchowska-Kisielewicz, M. (2018). A comparison of waste stability indices for mechanical-biological waste treatment and composting plant. International journal of environmental research and public health, 15(11), 2585.
[35] Pardilhó, S., Boaventura, R., Almeida, M., MaiaDias, J. (2022). Marine macroalgae waste: A potential feedstock for biogas production. Journal of environmental management, 304, 114309.
[36] Li, Y., Jin, Y., Li, J., Li, H., Yu, Z. (2016). Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied energy, 172, 47-58.
[37] Kafle, G. K., Chen, L. (2016). Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste management, 48, 492-502.
[38] Afilal, M. E., Elasri, O., Merzak, Z. (2014). Caractérisations des Déchets Organiques et évaluation du Potentiel Biogaz (Organic Waste Characterization and Evaluation of Its Potential Biogas). Journal of materials and environmental science, 5(4), 1160-1169.
[39] Fernández-Rodríguez, M. J., Mancilla-Leytón, J. M., Jiménez-Rodríguez, A., Borja, R., Rincón, B. (2021). Reuse of the digestate obtained from the biomethanization of olive mill solid waste (OMSW) as soil amendment or fertilizer for the cultivation of forage grass (Lolium rigidum var. Wimmera). Science of the total environment, 792, 148465.