1] Haghiri, S., Daghighi, A., Moharramzadeh, S.(2018). “Optimum coagulant forecasting by modeling jar test experiments using ANNs”. Drinking water engineering and science, 11(1), 1-8.
[2] Onyelowe, K. C., Jalal, F. E., Onyia, M. E., Onuoha, I. C., Alaneme, G. U. (2021). Application of gene expression programming to evaluate strength characteristics of hydrated-lime-activated rice husk ash-treated expansive soil. Applied computational intelligence and soft computing, 1-17.
[3] ABIDEEN, M. B. Z. (2016). “Optimization of coagulation process in water treatment plant using statistical approach”. Ph.D. dissertation, Universiti Teknologi Malaysia.
[4] Zemmouri, H., Drouiche, M., Sayeh, A., Lounici, H., Mameri, N. (2012). Coagulation flocculation test of Keddara's water dam using chitosan and sulfate aluminum. Procedia engineering, 33, 254-260.
[5] Alshikh, O. (2007). Parameters affecting coagulation/flocculation of drinking water under cold temperatures. University of Windsor (thesis), Canada.
[6] Zouboulis, A., Traskas, G., Samaras, P. (2008). Comparison of efficiency between poly‐aluminum chloride and aluminum sulphate coagulants during full‐scale experiments in a drinking water treatment plant. Separation science and technology, 43(6), 1507-1519.
[7] Liu, W. (2016). Enhancement of coagulant dosing control in water and wastewater treatment processes. Ph.D. dissertation, Norwegian University of Life Sciences.
[8] Wei, N., Zhang, Z., Liu, D., Wu, Y., Wang, J., Wang, Q. (2015). “Coagulation behavior of polyaluminum chloride: Effects of pH and coagulant dosage”. Chinese journal of chemical Engineering, 23(6), 1041-1046.
[9] Tantipalakul, Y., Palawatwichai, K., Detchakan, T., & Khaisan, J. (2018). “The study of optimal coagulants for water treatment process of Metropolitan Waterworks Authority”. Burapha science journal, 23(1), 207-220.
[10] Almatin, E., Gholipour, A. (2019). Estimating of optimal dose of PACL for turbidity removing from water. arXiv e-print, arXiv:1904.06421.
[11] Al-Baidhani, J. H., Alameedee, M. A. (2017). Optimal alum dosage prediction required to treat effluent water turbidity using artificial neural network. International journal of current engineering and technology, 7(4), 1552-1558.
[12] Alsaeed, R., Alaji, B., Ebrahim, M. (2021). Predicting turbidity and Aluminum in drinking water treatment plants using Hybrid Network (GA-ANN) and GEP. Drinking water engineering and science discussions, 1-17.