[1] Li, L., Wei, D., Wei, G., Du, Y. (2013). Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment. Journal of hazardous materials, 262, 48-54.
[2] Tomlin, C. D. (2009). The pesticide manual: a world compendium (No. Ed. 15). British Crop Production Council.
[3] Singh, B., Singh, K. (2016). Microbial degradation of herbicides. Critical reviews in microbiology, 42(2), 245-261.
[4] Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., Huang, Y. (2002). Toxicity of 40 herbicides to the green alga Chlorella vulgaris. Ecotoxicology and environmental safety, 51(2), 128-132.
[5] Mohan, S. V., Krishna, M. R., Muralikrishna, P., Shailaja, S., Sarma, P. N. (2007). Solid phase bioremediation of pendimethalin in contaminated soil and evaluation of leaching potential. Bioresource technology, 98(15), 2905-2910.
[6] Kočárek, M., Artikov, H., Voříšek, K., & Borůvka, L. (2016). Pendimethalin degradation in soil and its interaction with soil microorganisms. Soil and water research, 11(4), 213-219.
[7] USEPA. Persistent bioaccumulative toxic (PBT) chemicals. (1999). United States Environment Protection Agency, Final rule, Fed. Regist., 64, 5866658753.
[8] Ritter, L., Solomon, K. R., Forget, J., Stemeroff, M., O'Leary, C. (1995). Persistent organic pollutants: an assessment report on: DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls, dioxins and furans. December international programme on chemical safety (IPCS) within the framework of the inter-organization programme for the sound management of chemicals (IOMC).
[9] Kamrin, M. A. (1997). Pesticide profiles: toxicity, environmental impact, and fate. CRC press.
[10] Abdelbagi, A. O., Hammad, A. M. A., Elsheikh, E. A. E., Elsaid, O. E., Hur, J. H. (2017). Biodegradation of endosulfan and pendimethalin by three strains of bacteria isolated from pesticides-polluted soils in the Sudan. Applied biological chemistry, 60(3), 287-297.
[11] Han, Y., Tang, Z., Bao, H., Wu, D., Deng, X., Guo, G., Dai, B. (2019). Degradation of pendimethalin by the yeast YC2 and determination of its two main metabolites. RSC Advances, 9(1), 491-497.
[12] Pinto, A. P., Serrano, C., Pires, T., Mestrinho, E., Dias, L., Teixeira, D. M., Caldeira, A. T. (2012). Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Science of the total environment, 435, 402-410.
[13] Belal, E. B., Zidan, N. A., Mahmoud, H. A., Eissa, F. I. (2008). Bioremediation of pesticides – contaminated soils. Journal of agricultural research, 2008, 34, 588 – 608
[14] Vidali, M. (2001). Bioremediation. an overview. Pure and applied chemistry, 73(7), 1163-1172.
[15] Khan, M. W. A., Ahmad, M. (2006). Detoxification and bioremediation potential of a Pseudomonas fluorescens isolate against the major Indian water pollutants. Journal of environmental science and health, Part A, 41(4), 659-674.
[16] Kole, R. K., Saha, J., Pal, S., Chaudhuri, S., Chowdhury, A. (1994). Bacterial degradation of the herbicide pendimethalin and activity evaluation of its metabolites. Bulletin of environmental and contamination and toxicology, 52, 779-786.
[17] Singh, S. B., Kulshrestha, G. (1991). Microbial degradation of pendimethalin. Journal of environmental science and health, 26, 309-321.
[18] Megadi, V. B. Tallur, P. N. Hoskeri, R. S. Mulla, S. I. & Ninnekar, H. Z. (2010). Biodegradation of pendimethalin by Bacillus circulans. Indian journal of biotechnology, 9, 173- 177.
[19] Su, Y., Liu, C., Fang, H., Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial cell factories, 19(1), 1-12.
[20] Yu, X. M.,
Yu, T.,
Yin, G. H.,
Dong. Q. L.,
An, M.,
Wang, H. R. Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by
Bacillus subtilis strain Bs-15.
Genetic and modular research, 14(4), 14717-30
[21] Olchanheski, L. R., Dourado, M. N., Beltrame, F. L., Zielinski, A. A., Demiate, I. M., Pileggi, S. A., Pileggi, M. (2014). Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α. PloS one, 9(6), e99960.
[22] Kumar, H., Franzetti, L., Kaushal, A. Kumar D. (2019). Pseudomonas fluorescens: a potential food spoiler and challenges and advances in its detection. Annals of microbiology, 69, 873-883.
[23] Moneke, A. N., Okpala, G. N. & Anyanwu, C. U. (2010). Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. African journal of biotechnology, 9(26), 4067-4074.
[25] Hang, Y. D. (2017). Determination of oxygen demand. In food analysis (pp. 503-507). Springer, Cham.
[26] Shah, J., Mustaun Rasu, M. D., Shehzad, F. U. (2011). Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method. Environmental monitoring and assessment, 175(1-4), 103-8.
[27] Mu’azu, W. M. A., Okpanachi, I. Y., Faruq, U. A., Fatimah, T. (2018). Characterization and role of pendimethalin catabolizing bacteria isolated from agricultural soil in Bauchi, Bauchi state. GSC. Biological and pharmaceutical science, 5(3), 12-19.
[28] Elsayed, B., El-Nady, M. F., (2013). Bioremediation of pendimethalin-contaminated soil. African Journal of microbiology research, 7(21), 2574-2588.
[29] Erguven, G. O., Bayhan, H., Ikizoglu, B., Kanat, G., Nuhoglu, Y. (2016). The capacity of some newly bacteria and fungi for biodegradation of herbicide trifluralin under agiated culture media. Cellular and molecular biology, 62(6), 74-79.
[30] Zhang, H., Mu, W., Hou, Z., Wu, X., Zhao, W., Zhang, X., Pan, H., Zhang, S. (2012). Biodegradation of nicosulfuron by bacterium Serratia marcescens N80. Journal of environmental science and health, 47, 153-160.
[31] Shelton, D. R., Khader, S., Karns, J. S., Pogell, B. M. (1996). Metabolism of twelve herbicides by Streptomyces. Biodegradation, 7, 129–136.
[32] Worthing, C. R., Hance, R. J. (1991). The Pesticide manual. 9t h Ed. A world compendium. The British crop protection council. Surrey UK, 763-764.
[33] Okerentugba, P. O., Ezeronye, O. U. (2003). Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. African journal biotechnology, 2(9), 288-292.
[34] Desmarchelier, P., Fegan N. (2011). Pathogens in milk, Escherichia coli. Editor(s): John W. Fuquay, Encyclopedia of dairy sciences (Second edition), Academic press, 60-66.
[35] Dı́az, E., Ferrández, A., Prieto, M. A., Garcı́a, J. L. (2001). Biodegradation of aromatic compounds by Escherichia coli. Microbiology and molecular biology reviews, 65(4), 523-569.