Factors affecting photocatalytic degradation of Reactive Green-19 with CdO-TiO2 nanocomposite

Document Type : Research Paper


1 University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, India

2 Gharda Institute of Technology, Lavel. Maharashtra, India


Cdo-TiO2 nanocomposites were synthesized by varying the molar ratio of CdO: TiO2 as 1:1, 1:2, and 2:1 using the sol-gel method. The pH value for all the CdO-TiO2 nanocomposites was controlled at two different values, pH-3 and pH-13. The nanocomposites were used for facilitating photolytic degradation of azo dye (Reactive Green-19). The surface morphology, crystallinity, and properties related to interactions with the light of the prepared catalyst were examined by scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectrophotometer, respectively. The nanocomposites for all molar ratios synthesized at pH-3 showed rod-like structure and some irregular shapes, while those synthesized at pH-13 were spherical. From XRD patterns, composites at pH-3 and pH-13 were crystalline; however, those at pH-3 were more crystalline. The parameters, namely initial dye concentration, pH of dye solution, and catalyst concentration, affecting photocatalytic activities were examined and optimized at 75 ppm, pH-7.5, and 1g/L, respectively. The progress of the degradation process of Reactive Green-19 was observed by monitoring the change in the concentration of the dye after a certain time interval by measuring the absorbance by UV-Vis spectrophotometer. Catalyst A1:1 (The nanocomposites obtained at pH-3 with 1:1 mol% of CdO:TiO2)  showed maximum degradation (94.53 %) at a catalyst concentration of 1 g/L. 


Main Subjects

[1] Yaseen, D.A., Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Internatiomal. Journal of environmental. science and technology., 16, 1193-1226..
[2] Zazouli, M. A., Azari, A., Dehghan, S., Razieh Salmani Malekkolae, R.S.(2016). Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and crataegus oxyacantha core. Water science and technology., 74(9), 2021-2035.
[3] Sarkar, S., Banerjee, A., Halder, U., Biswas, R., Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water conservation science and engineering, 2(4), 121-131.
[4] Saratale, R. G., Saratale, G. D., Chang, J. S., Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan institute of chemical engineers, 42(1), 138-157.
[5] Moradi, M., Hosseini Sabzevari, M., Marahel, F., Shameli, A. (2021). Removal of reactive green KE-4BD and Congo red dyes in textile effluent by natural clinoptilolite particles on a biosorbent as a cheap and efficient adsorbent: experimental design and optimisation. International journal of environmental analytical chemistry, 1-19.
[6] Issabayeva, G., Hang, S. Y., Wong, M. C., Aroua, M. K.(2018). A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Reviews in chemical engineering, 34(6), 855-873.
[7] Moazeni, M., Parastar, S., Mahdavi, M., Ebrahimi, A. (2020). Evaluation efficiency of Iranian natural zeolites and synthetic resin to removal of lead ions from aqueous solutions. Applied water science, 10(2), 1-9.
[8] Bridges, L., Mohamed, R. A., Khan, N. A., Brusseau, M. L., Carroll, K. C. (2020). Comparison of manganese dioxide and permanganate as amendments with persulfate for aqueous 1, 4-dioxane oxidation. Water, 12(11), 3061.
[9] Gautam, K., Kamsonlian, S., Kumar, S. (2020). Removal of Reactive Red 120 dye from wastewater using electrocoagulation: optimization using multivariate approach, economic analysis, and sludge characterization. Separation science and technology, 55(18), 3412-3426.
[10] Schaefer, C. E., Yang, X., Pelz, O., Tsao, D. T., Streger, S. H., & Steffan, R. J. (2010). Aerobic biodegradation of iso-butanol and ethanol and their relative effects on BTEX biodegradation in aquifer materials. Chemosphere, 81(9), 1104-1110.
[11] Haritash, A. K., Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of hazardous materials, 169(1-3), 1-15.
[12] Loeb, S.K., Alvarez, P.J., Brame, J.A., Cates, E.L., Choi, W., Crittenden, J., Dionysiou, D.D., Li, Q., Li-Puma, G., Quan, X., Sedlak, D.L., Waite, T.D., Westerhoff, P., Kim, J. (2019). The technology horizon for photocatalytic water treatment: Sunrise or sunset?. Environmental science and technology, 53(6), 2937-2947.
[13] Lin, L., Jiang, W., Chen, L., Xu, P., Wang, H.(2020). Treatment of produced water with photocatalysis: Recent advances, affecting factors and future research prospects. Catalysts, 10, 924.
[14] Khataee, A. R. (2009). Photocatalytic removal of CI basic red 46 on immobilized TiO2 nanoparticles: Artificial neural network modelling. Environmental technology, 30(11), 1155-1168.
[15] Wang, Q., Zheng, K., Yu, H., Zhao, L., Zhu, X., Zhang, J.(2020). Laboratory experiment on the nano-TiO2 photocatalytic degradation effect of road surface oil pollution. Nanotechnology reviews, 9(1), 922-933.
[16] Chebli, D., Fourcade, F., Brosillon, S., Nacef, S., Amrane, A. (2011). Integration of photocatalysis and biological treatment for azo dye removal–application to AR183. Environmental technology, 32(5), 507-514.
[17] Pan, H.,  Heagy, M.D.(2020). Photons to formate: A review on photocatalytic reduction of CO2 to formic acid. Nanomaterials, 10(12), 1-24.
[18] Konstantinou, I. K., Sakellarides, T. M., Sakkas, V. A., Albanis, T. A. (2001). Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environmental science and technology, 35(2), 398-405
[19] Kwon, Y. T., Song, K. Y., Lee, W. I., Choi, G. J., Do, Y. R. (2000). Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. Journal of catalysis, 191(1), 192-199.
[20] Sakthivela, S., Neppolianb, B., Shankarb, M., Arabindoob, B.,Palanichamyb, M., Murugesan. V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar energy materials and Solar cells, 77(1), 65–82.
[21] Kwon, Y. T., Song, K. Y., Lee, W. I., Choi, G. J., Do, Y. R. (2000). Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. Journal of catalysis, 191(1), 192-199.
[22] Nayak, J., Sahu, S. N., Kasuya, J., Nozaki, S. (2008). CdS–ZnO composite nanorods: synthesis, characterization and application for photocatalytic degradation of 3, 4-dihydroxy benzoic acid. Applied surface science, 254(22), 7215-7218.
[23] Kumar, S., Selvakumar, M., Babu, G., Karuthapandian, S., Chattopadhyay, S. (2015). CdO nanospheres: Facile synthesis and bandgap modification for the superior photocatalytic activity. Materials letters, 151,  45-48.
[24] Huhtala, M., Heino, J., Casciari, D., de Luise, A., Johnson, M. S. (2005). Integrin evolution: insights from ascidian and teleost fish genomes. Matrix biology, 24(2), 83-95.
[25] Konstantinou, I. K.,  Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied catalysis B: Environmental, 49(1), 1–14.
[26] Chen, L.C., Huang, C.M., and Tsai, F.R. (2007). Characterization and Photocatalytic Activity of K+-Doped TiO2 Photocatalysts. Journal of molecular catalysis A: Chemical, 265, 133-140.
[27] Fox, M. A., Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical reviews, 93(1), 341-357.
[28] Chakrabarti, S., Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of hazardous materials, 112(3), 269-278.
[29] Zeid, E.F.A., Ibrahem, I.A., Ali, A.M., Walied A.A. Mohamed, W.A.A.(2019).The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Results in physics, 12, 562-570.
[30] Pattabi, M., B, Saraswathi Amma. (2007). Effect of precursor concentration on the particle size of mercaptopropionic acid-capped CdS nanoparticles. Journal of new materials for electrochemical systems, 10(1), 43-47.
[31] Gupta, , Ramrakhiani, M. (2009). Influence of the particle size on the optical properties of CdSe nanoparticles. The open nanoscience journal, 3, 15-19.
[32] Nagaveni, K., Hegde, M. S., Ravishankar, N., Subbanna, G. N., Madras, G. (2004). Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir20(7), 2900-2907.
[33] Huang, Y. U., Zheng, X., Zhongyi, Y. I. N., Feng, T. A. G., Beibei, F. A. N. G., Keshan, H. O. U. (2007). Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light. Chinese journal of chemical engineering15(6), 802-807.
[34] Sahoo, S. K., Bhattacharya, S., Sahoo, N. K. (2020). Photocatalytic degradation of biological recalcitrant pollutants: a green chemistry approach. Biointerface research in applied chemistry10(2), 5048-5060.
[35] Prabakar, A.C., Killivalavan, G., Sivakumar, D., Naidu, K.C.B., Sathyaseelan, B., Senthilnathan, K.,Baskaran, I., Manikandan, E., Rao, B.R., Sarma, M., et al. (2020).  Structural, morphological, and magnetic properties of copper zinc cobalt ferrites systems nanocomposites. Biointerface research in applied chemistry, 10(4), 6015-6019.