[1] Wang, Q., Ko, J. H., Liu, F., Xu, Q. (2021). Leaching characteristics of heavy metals in MSW and bottom ash co-disposal landfills. Journal of hazardous materials, 416, 126042.
[2] Pomberger, R., Sarc, R., Lorber, K. E. (2017). Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method. Waste management, 61, 558-571.
[3] European Parliament Report (2017). Towards a circular economy – Waste management in the EU. IP/G/STOA/FWC/2013-001/LOT 3/C3. 140p.
[4] Lo, H. M. (2005). Metals behaviors of MSWI bottom ash co-digested Anaerobically with MSW. Research conservation recovery, 43, 263-280.
[5] Boni, M. R., Leoni, S., Sbaffoni, S. (2007). Co-landfilling of pretreated waste: Disposal and management strategies at lab-scale. Journal of hazardous materials, 147 (1–2), 37-47.
[6] Lo, H. M., Chiu, H. Y., Lo, S. W., Lo, F. C. (2012). Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion. Bioresource technology, 114, 90-94.
[7] Wu, H., Wang, Q., Ko, J. H., Xu, Q. (2018). Characteristics of geotextile clogging in MSW landfills co-disposed with MSWI bottom ash. Waste management, 78, 164-172.
[8] Xu, H., Li, Y., Hu D., Zhao, Y., Chen, L., Zhou, L., Chen, G. (2021). Effect of microaerobic microbial pretreatment on anaerobic digestion of a lignocellulosic substrate under controlled pH conditions. Bioresource technology, 328, 124852.
[9] Ademe (French Environment and Energy Management Agency) “Les déchets en chiffres en France,” 12p (2006).
[10] Ait Baddi, G., Antizar-Ladislao, B., Alcuta, A., Mazeas, L., Li, T., Duquennoi, C., Redon, E., Bouchez, T. (2013). Investigation of the degree of municipal solid waste stabilization during anaerobic degradation using fluorescence excitation-emission spectroscopy. Environment engineering science, 30 (5), 232-240.
[11] Laloui-Carpentier, W., Li, T., Vigneron, V., Mazeas, L., Bouchez, T. (2006). Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie van Leeuwenhoek, 89, 423-434.
[12] Stahl, D. A., Amann, R. (1991). Development and application of nucleic acid probes.. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons Ltd., Chichester, 205-248.
[13] Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., Mansour, A., (2012). Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste management, 32 (12), 2258-2265.
[14] AFNOR (1992). Norme AFNOR X31-210 “Déchets, essais de lixiviation,” In: Normalisation française, 13 p.
[15] Barlaz, M. A., Schaefer, D. M., Ham, R. K. (1989). Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied environment microbiology 10, 55-65.
[16] Xu, Q., Qin, J., Yuan, T., Ko, J. H. (2020). Extracellular enzyme and microbial activity in MSW landfills with different gas collection and leachate management practices. Chemosphere, 250, 126264.
[17] Huang, L. N., Chen, Y. Q., Zhou, H., Luo, S., Lan, C. Y., Qu, L. H. (2003). Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS microbiology ecology, 46, 2 171-177.
[18] Richnow, H. H., Meckenstock, R. U., Reitzel, L. A., Baun, A., Ledin, A., Christensen, T.H. (2003). In situ biodegradation determined by carbon isotope fractionation of aromatic hydrocarbons in an anaerobic landfill leachate plume (Vejen, Denmark). Journal contaminants hydrology, 64, (1-2) 59-72.
[19] Rendek, E., Ducom, G., Germain, P. (2006). Influence of organic matter on municipal solid waste incinerator bottom ash carbonation. Chemosphere, 64, 1212-1218.
[20] Rendek, E., Ducom, G., Germain, P. (2007). Assessment of MSWI bottom ash organic carbon behavior: A biophysicochemical approach. Chemosphere, 67, 8, 1582-7.
[21] Gonzalez-Gil, G., Kleerebezem, R., Lettinga, G. (1999). Effects of nickel and cobalt on kinetics of methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring. Applied environment microbiology, 65 (4), 1789-1793.
[22] Zandvoort, M. H., Geerts R., Lettinga, G., Lens, P. N. L. (2003). Methanol degradation in granular sludge reactors at sub-optimal metal concentrations: role of iron, nickel and cobalt. Enzyme microbial technology, 33, 190-208.
[23] Zandvoort, M. H., Van Hullebusch, E. D., Gieteling, J., Lens, P. N. L. (2006). Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencie. Enzyme microbial technology, 39, 337-346.
[24] Wang, J., Westerholm, M., Qiao, W., Mahdy, A., Wandera, S. M., Yin, D., Bi, S., Fan, R., Dong, R. (2019). Enhancing anaerobic digestion of dairy and swine wastewater by adding trace elements: Evaluation in batch and continuous experiments. Water science technology, 80 (9), 1662-1672.
[25] Diekert, G. U., Konheiser, K. Piechulla, R. K., Thauer, K. (1981). Nickel requirement and factor F430 content of methanogenic bacteria. Journal bacteriology, 148, 459-464.
[26] Christensen, B., Christiansen, T., Gombert, A. K., Thykaer, J., Nielsen, J. (2001). Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnology bioengeneering, 74(6), 517-523.
[27] Jansen, S., Gonzalez-Gil, G., Van Leeuwen, H. P. (2007). The impact of Co and Ni speciation on methanogenesis in sulfidic media—Biouptake versus metal dissolution. Enzymatic microbiology technology, 40, 823–830.
[28] Yang, S., Winkel, M., Wagner, D., Liebner, S. (2017). Community structure of rare methanogenic archaea: insight from a single functional group. FEMS microbiology, 93(11), 126.