Co-disposal of bottom ash and municipal solid wastes: chemical, microbiological behaviours and stability in anaerobic conditions

Document Type : Research Paper

Authors

1 Equipe Bio-procédés et environnement, Laboratoire des Sciences de l’Ingénieur et le Management de l’Énergie, Ecole Supérieure de Technologie, Université Ibn Zohr, Agadir, Route Oued Ziz, Morocco

2 Ecole Nationale des Sciences Appliqués d'Agadir, Université Ibn Zohr, Agadir, Morocco

3 Faculté des Sciences et Techniques, Université Sultan Moulay Sliman, Béni –Mellal, Faculté des Sciences et Techniques, B.P : 523 Béni Mellal, Morocco

4 Irstea, Hydrosystems and Bioprocesses Research Unit, 1 rue Pierre-Gilles de Gennes, F-92761 Antony, France

Abstract

The present study deals with the possible pre-treatment of municipal solid wastes (MSW) in anaerobic conditions and their co-disposal with bottom ash. In this objective, the effect of the addition of bottom ash on organic matter degradation was checked using different analyses. The obtained results showed a great reduction of organic matter in the presence of bottom ash (53% of a solid fraction is degraded instead of 18% for the control after 26 days of degradation). Consequently, methane production was more important for the leachate from a bioreactor mixed with the bottom ash, which reached 70.10 L/Kg in comparison with 50L/Kg for leachate from the control. The characterization of leachates by molecular tools revealed that the microorganisms responsible for organic matter degradation in anaerobic conditions belong to the Methanosarscina genera, and the methanogenesis reaction was acetate-dependent methanogenesis. To better understand the role of bottom ash in the acceleration of methanogenesis, molecular tools were used to identify the microorganisms in the bottom ash leachate after a leaching test. The obtained results showed the absence of microorganisms in the bottom ash leachate. The quantification by atomic absorption spectrophotometry (AAS) of dissolved iron, nickel, and cobalt in the bottom ash leachate after the leaching test, showed that the amounts of these metals were 57.30, 0.035, and 0.006mM, respectively. Moreover, the quantification of iron, nickel, and cobalt in leachates from the bioreactor mixed with bottom ash and from the control showed that these amounts reached 94.78mM, 0.49mM, and 0.01mM after 26 days of degradation, and 99.40mM, 0.08mM, and 0.009mM, respectively, after 138 days of degradation. Consequently, it can be suggested that bottom ash must be co-landfilled with municipal solid wastes at 9% as a suitable strategy, which will provide a more rapid chemical and microbiological stabilization of the municipal solid waste in landfills.

Keywords

Main Subjects


[1] Wang, Q., Ko, J. H., Liu, F., Xu, Q. (2021). Leaching characteristics of heavy metals in MSW and bottom ash co-disposal landfills. Journal of hazardous materials, 416, 126042.
[2] Pomberger, R., Sarc, R., Lorber, K. E. (2017). Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method. Waste management, 61, 558-571.
[3] European Parliament Report (2017). Towards a circular economy – Waste management in the EU. IP/G/STOA/FWC/2013-001/LOT 3/C3. 140p.
[4] Lo, H. M. (2005). Metals behaviors of MSWI bottom ash co-digested Anaerobically with MSW. Research conservation recovery, 43, 263-280.
[5] Boni, M. R., Leoni, S., Sbaffoni, S. (2007). Co-landfilling of pretreated waste: Disposal and management strategies at lab-scale. Journal of hazardous materials, 147 (1–2), 37-47.
[6] Lo, H. M., Chiu, H. Y., Lo, S. W., Lo, F. C. (2012). Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion. Bioresource technology, 114, 90-94.
[7] Wu, H., Wang, Q., Ko, J. H., Xu, Q. (2018). Characteristics of geotextile clogging in MSW landfills co-disposed with MSWI bottom ash. Waste management, 78, 164-172.
[8] Xu, H., Li, Y., Hu D., Zhao, Y., Chen, L., Zhou, L., Chen, G. (2021). Effect of microaerobic microbial pretreatment on anaerobic digestion of a lignocellulosic substrate under controlled pH conditions. Bioresource technology, 328, 124852.
[9] Ademe (French Environment and Energy Management Agency) “Les déchets en chiffres en France,” 12p (2006).
[10] Ait Baddi, G., Antizar-Ladislao, B., Alcuta, A., Mazeas, L., Li, T., Duquennoi, C., Redon, E., Bouchez, T. (2013). Investigation of the degree of municipal solid waste stabilization during anaerobic degradation using fluorescence excitation-emission spectroscopy. Environment engineering science, 30 (5), 232-240.
[11] Laloui-Carpentier, W., Li, T., Vigneron, V., Mazeas, L., Bouchez, T. (2006). Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie van Leeuwenhoek, 89, 423-434.
[12] Stahl, D. A., Amann, R. (1991). Development and application of nucleic acid probes.. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons Ltd., Chichester, 205-248.
[13] Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., Mansour, A., (2012). Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste management, 32 (12), 2258-2265.
[14] AFNOR (1992). Norme AFNOR X31-210 “Déchets, essais de lixiviation,” In: Normalisation française, 13 p.
[15] Barlaz, M. A., Schaefer, D. M., Ham, R. K. (1989). Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied environment microbiology 10, 55-65.
[16] Xu, Q., Qin, J., Yuan, T., Ko, J. H. (2020). Extracellular enzyme and microbial activity in MSW landfills with different gas collection and leachate management practices. Chemosphere, 250, 126264.
[17] Huang, L. N., Chen, Y. Q., Zhou, H., Luo, S., Lan, C. Y., Qu, L. H. (2003). Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS microbiology ecology, 46, 2 171-177.
[18] Richnow, H. H., Meckenstock, R. U., Reitzel, L. A., Baun, A., Ledin, A., Christensen, T.H. (2003). In situ biodegradation determined by carbon isotope fractionation of aromatic hydrocarbons in an anaerobic landfill leachate plume (Vejen, Denmark). Journal contaminants hydrology, 64, (1-2) 59-72.
[19] Rendek, E., Ducom, G., Germain, P. (2006). Influence of organic matter on municipal solid waste incinerator bottom ash carbonation. Chemosphere, 64, 1212-1218.
[20] Rendek, E., Ducom, G., Germain, P. (2007). Assessment of MSWI bottom ash organic carbon behavior: A biophysicochemical approach. Chemosphere, 67, 8, 1582-7.
[21] Gonzalez-Gil, G., Kleerebezem, R., Lettinga, G. (1999). Effects of nickel and cobalt on kinetics of methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring. Applied environment microbiology, 65 (4), 1789-1793.
[22] Zandvoort, M. H., Geerts R., Lettinga, G., Lens, P. N. L. (2003). Methanol degradation in granular sludge reactors at sub-optimal metal concentrations: role of iron, nickel and cobalt. Enzyme microbial technology, 33, 190-208.
[23] Zandvoort, M. H., Van Hullebusch, E. D., Gieteling, J., Lens, P. N. L. (2006). Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencie. Enzyme microbial technology, 39, 337-346.
[24] Wang, J., Westerholm, M., Qiao, W., Mahdy, A., Wandera, S. M., Yin, D., Bi, S., Fan, R., Dong, R. (2019). Enhancing anaerobic digestion of dairy and swine wastewater by adding trace elements: Evaluation in batch and continuous experiments. Water science technology, 80 (9), 1662-1672.
[25] Diekert, G. U., Konheiser, K. Piechulla, R. K., Thauer, K. (1981). Nickel requirement and factor F430 content of methanogenic bacteria. Journal bacteriology, 148, 459-464.
[26] Christensen, B., Christiansen, T., Gombert, A. K., Thykaer, J., Nielsen, J. (2001). Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnology bioengeneering, 74(6), 517-523.
[27] Jansen, S., Gonzalez-Gil, G., Van Leeuwen, H. P. (2007). The impact of Co and Ni speciation on methanogenesis in sulfidic media—Biouptake versus metal dissolution.  Enzymatic microbiology technology, 40, 823–830.
[28] Yang, S., Winkel, M., Wagner, D., Liebner, S. (2017). Community structure of rare methanogenic archaea: insight from a single functional group. FEMS microbiology, 93(11), 126.