[1] Kamyotra, S. J. S., Saha, D., Tyagi, S. K., Sen, A. K., Srivastava, R. C., Pathak, A. (2011). Guidelines for the measurement of ambient air pollutants.1–7
[2] Pleijel, H. (1999). Ground-Level Ozone – A Threat to Vegetation. Swedish Environmental protection agency.
[3] Mukherjee, A., Agrawal, S. B., Agrawal, M. (2018). Intra-urban variability of ozone in a tropical city—characterization of local and regional sources and major influencing factors. Air quality, atmosphere and health, 11(8), 965–977.
[4] Marathe, S. A., Murthy, S. (2015). Seasonal Variation in Surface Ozone Concentrations, Meteorology and Primary Pollutants in Coastal Mega City of Mumbai, India. Journal of climatology and weather forecasting, 03(03), 1–10.
[5] Chattopadhyay, G., Midya, S. K., Chattopadhyay, S. (2021). Information Theoretic Study of the Ground-Level Ozone and Its Precursors Over Kolkata, India, During the Summer Monsoon. Iranian journal of science and technology, transaction A: science, 45(1), 201–207.
[6] Fowler, D., Amann, M., Anderson, R., Ashmore, M., Cox, P., Depledge, M., Derwent, D., Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M. (2008). Ground-level ozone in the 21st century: future trends, impacts and policy implications. The royal society, https://royalsociety.org/topics-policy/publications/2008/ground-level-ozone.
[7] Lu, X., Zhang, L., Shen, L. (2019). Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns. Current pollution reports, 5(4), 238–260.
[8] Roberts-Semple, D., Song, F., Gao, Y. (2012). Seasonal characteristics of ambient nitrogen oxides and ground-level ozone in metropolitan northeastern New Jersey. Atmospheric pollution research, 3(2), 247–257.
[9] Belis, C. a, Larsen, B. R., Amato, F., Haddad, I. El, Favez, O., Harrison, R. M., Hopke, P. K., Nava, S., Paatero, P., Prévôt, A., Quass, U., Vecchi, R., Viana, M. (2014). European guide on air pollution source Apportionment with receptor models. EUR Luxembourg (Luxembourg): Publications Office of the European Union.
[10] Shi, G., Liu, J., Wang, H., Tian, Y., Wen, J., Shi, X., Feng, Y., Ivey, C. E., Russell, A. G. (2018). Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models. Environmental pollution, 233, 1058–1067.
[11] Sheesley, R. J. ed. (2018). Air Quality and Source Apportionment. MDPI AG-multidisciplinary digital publishing institute.
[12] Núñez-Alonso, D., Pérez-Arribas, L. V., Manzoor, S., Cáceres, J. O. (2019). Statistical Tools for Air Pollution Assessment: Multivariate and Spatial Analysis Studies in the Madrid Region. Journal of analytical methods in chemistry, 1-9.
[13] Polanco Martínez, J. M. (2016). The role of principal component analysis in the evaluation of air quality monitoring networks 1 Introduction. Comunicaciones en estadística, 9(2), 255–277.
[14] Bartholomew, D. J. (2010). Principal components analysis. International encyclopedia of education, 374–377.
[15] Mia, R., Selim, M., Shamim, A. M., Chowdhury, M., Sultana, S., Armin, M., Hossain, M., Akter, R., Dey, S., Naznin, H. (2019). Review on various types of pollution problem in textile dyeing and printing industries of Bangladesh and recommandation for mitigation. Journal of textile engineering and fashion technology, 5(4), 220–226.
[16] Tiwari. M., Babel.S. n.d. (2013). Air pollution in textile industry. Asian journal of environmental science, 8(1), 64–66.
[17] Verma, N. 2018. An investigation of ozone formation through its precursors (CO; NOx; VOC) and its loss processes at a sub-urban site of agra. Dayalbagh educational institute.
[18] Lai, T. L., Talbot, R., Mao, H. (2012). An investigation of two highest ozone episodes during the last decade in New England. Atmosphere, 3(1), 59–86.
[19] Spreitzer, E., Attinger, R., Boettcher, M., Forbes, R., Wernli, H., Joos, H. (2019). Modification of potential vorticity near the tropopause by nonconservative processes in the ECMWF model. Journal of the atmospheric sciences, 76(6), 1709–1726.
[20] andhya, M., Sridharan, S., Indira Devi, M., Gadhavi, H. (2015). Tropical upper tropospheric ozone enhancements due to potential vorticity intrusions over Indian sector. Journal of atmospheric and solar-terrestrial physics, 132, 147–152.
[21] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric environment, 38(18), 2895–2907.
[22] Moshenberg, S., Lerner, U., Fishbain, B. (2015). Spectral methods for imputation of missing air quality data. Environmental systems research, 4(26) 1-13.
[23] Korhale, N., Anand, V., Beig, G. (2021). Disparity in ozone trends under COVID-19 lockdown in a closely located coastal and hillocky metropolis of India. Air quality, atmosphere and health, 14(4), 533–542.
[24] Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Prévôt, A. S. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218–222.
[25] Larsen, R. I. (1966). Air pollution from motor vehicles. Annals of the New York academy of sciences, 136(12), 277–301.
[26] Transport research wing of the ministry of road transport and highways. 2019. The road transport year book. New Delhi.
[27] Guttikunda, S. K., Nishadh, K. A., Gota, S., Singh, P., Chanda, A., Jawahar, P., Asundi, J. (2019). Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Atmospheric pollution research, 10(3), 941-953.
[28] Winkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., Wallington, T. J. (2018). Vehicle criteria pollutant (pm, no x, co, hcs) emissions: how low should we go?. Npj Climate and atmospheric science, 1(1), 1-5.
[29] Reports. (2020). Air quality analysis during summer lockdown : Some highlights. Centre for Science and Environment (CSE).
[1] Kamyotra, S. J. S., Saha, D., Tyagi, S. K., Sen, A. K., Srivastava, R. C., Pathak, A. (2011). Guidelines for the measurement of ambient air pollutants.1–7
[2] Pleijel, H. (1999). Ground-Level Ozone – A Threat to Vegetation. Swedish Environmental protection agency.
[3] Mukherjee, A., Agrawal, S. B., Agrawal, M. (2018). Intra-urban variability of ozone in a tropical city—characterization of local and regional sources and major influencing factors. Air quality, atmosphere and health, 11(8), 965–977.
[4] Marathe, S. A., Murthy, S. (2015). Seasonal Variation in Surface Ozone Concentrations, Meteorology and Primary Pollutants in Coastal Mega City of Mumbai, India. Journal of climatology and weather forecasting, 03(03), 1–10.
[5] Chattopadhyay, G., Midya, S. K., Chattopadhyay, S. (2021). Information Theoretic Study of the Ground-Level Ozone and Its Precursors Over Kolkata, India, During the Summer Monsoon. Iranian journal of science and technology, transaction A: science, 45(1), 201–207.
[6] Fowler, D., Amann, M., Anderson, R., Ashmore, M., Cox, P., Depledge, M., Derwent, D., Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M. (2008). Ground-level ozone in the 21st century: future trends, impacts and policy implications. The royal society, https://royalsociety.org/topics-policy/publications/2008/ground-level-ozone.
[7] Lu, X., Zhang, L., Shen, L. (2019). Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns. Current pollution reports, 5(4), 238–260.
[8] Roberts-Semple, D., Song, F., Gao, Y. (2012). Seasonal characteristics of ambient nitrogen oxides and ground-level ozone in metropolitan northeastern New Jersey. Atmospheric pollution research, 3(2), 247–257.
[9] Belis, C. a, Larsen, B. R., Amato, F., Haddad, I. El, Favez, O., Harrison, R. M., Hopke, P. K., Nava, S., Paatero, P., Prévôt, A., Quass, U., Vecchi, R., Viana, M. (2014). European guide on air pollution source Apportionment with receptor models. EUR Luxembourg (Luxembourg): Publications Office of the European Union.
[10] Shi, G., Liu, J., Wang, H., Tian, Y., Wen, J., Shi, X., Feng, Y., Ivey, C. E., Russell, A. G. (2018). Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models. Environmental pollution, 233, 1058–1067.
[11] Sheesley, R. J. ed. (2018). Air Quality and Source Apportionment. MDPI AG-multidisciplinary digital publishing institute.
[12] Núñez-Alonso, D., Pérez-Arribas, L. V., Manzoor, S., Cáceres, J. O. (2019). Statistical Tools for Air Pollution Assessment: Multivariate and Spatial Analysis Studies in the Madrid Region. Journal of analytical methods in chemistry, 1-9.
[13] Polanco Martínez, J. M. (2016). The role of principal component analysis in the evaluation of air quality monitoring networks 1 Introduction. Comunicaciones en estadística, 9(2), 255–277.
[14] Bartholomew, D. J. (2010). Principal components analysis. International encyclopedia of education, 374–377.
[15] Mia, R., Selim, M., Shamim, A. M., Chowdhury, M., Sultana, S., Armin, M., Hossain, M., Akter, R., Dey, S., Naznin, H. (2019). Review on various types of pollution problem in textile dyeing and printing industries of Bangladesh and recommandation for mitigation. Journal of textile engineering and fashion technology, 5(4), 220–226.
[16] Tiwari. M., Babel.S. n.d. (2013). Air pollution in textile industry. Asian journal of environmental science, 8(1), 64–66.
[17] Verma, N. 2018. An investigation of ozone formation through its precursors (CO; NOx; VOC) and its loss processes at a sub-urban site of agra. Dayalbagh educational institute.
[18] Lai, T. L., Talbot, R., Mao, H. (2012). An investigation of two highest ozone episodes during the last decade in New England. Atmosphere, 3(1), 59–86.
[19] Spreitzer, E., Attinger, R., Boettcher, M., Forbes, R., Wernli, H., Joos, H. (2019). Modification of potential vorticity near the tropopause by nonconservative processes in the ECMWF model. Journal of the atmospheric sciences, 76(6), 1709–1726.
[20] andhya, M., Sridharan, S., Indira Devi, M., Gadhavi, H. (2015). Tropical upper tropospheric ozone enhancements due to potential vorticity intrusions over Indian sector. Journal of atmospheric and solar-terrestrial physics, 132, 147–152.
[21] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric environment, 38(18), 2895–2907.
[22] Moshenberg, S., Lerner, U., Fishbain, B. (2015). Spectral methods for imputation of missing air quality data. Environmental systems research, 4(26) 1-13.
[23] Korhale, N., Anand, V., Beig, G. (2021). Disparity in ozone trends under COVID-19 lockdown in a closely located coastal and hillocky metropolis of India. Air quality, atmosphere and health, 14(4), 533–542.
[24] Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Prévôt, A. S. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218–222.
[25] Larsen, R. I. (1966). Air pollution from motor vehicles. Annals of the New York academy of sciences, 136(12), 277–301.
[26] Transport research wing of the ministry of road transport and highways. 2019. The road transport year book. New Delhi.
[27] Guttikunda, S. K., Nishadh, K. A., Gota, S., Singh, P., Chanda, A., Jawahar, P., Asundi, J. (2019). Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Atmospheric pollution research, 10(3), 941-953.
[28] Winkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., Wallington, T. J. (2018). Vehicle criteria pollutant (pm, no x, co, hcs) emissions: how low should we go?. Npj Climate and atmospheric science, 1(1), 1-5.
[29] Reports. (2020). Air quality analysis during summer lockdown : Some highlights. Centre for Science and Environment (CSE).