[1] Abbaspour, A., Asghari, H. R. (2019). Effect of biochar on nitrogen retention in soil under corn plant inoculated with arbuscular mycorrhizal fungi. Advances in environmental technology, 5(3), 133-140.
[2] Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource technology, 118, 536-544.
[3] Naeem, M. A., Khalid, M., Ahmad, Z., Naveed, M. (2016). Low pyrolysis temperature biochar improves growth and nutrient availability of maize on typic calciargid. Communications in soil science and plant analysis, 47(1), 41-51.
[4] Bridgwater, A. V., Carson, P., Coulson, M. (2007). A comparison of fast and slow pyrolysis liquids from mallee. International journal of global energy issues, 27(2), 204-216.
[5] Daghaghele, S., Kiasat, A. R., Safieddin Ardebili, S. M., Mirzajani, R. (2021). Intensification of Extraction of Antioxidant Compounds from Moringa Oleifera Leaves Using Ultrasound-Assisted Approach: BBD-RSM Design. International journal of fruit science, 21(1), 693-705.
[6] Dhaundiyal, A., Atsu, D., Toth, L. (2020). Physico-chemical assessment of torrefied Eurasian pinecones. Biotechnology for biofuels, 13(1), 1-20.
[7] Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of environmental management, 92(1), 223-228.
[8] Joseph, S., Peacocke, C., Lehmann, J., Munroe, P. (2009). Developing a biochar classification and test methods. Biochar for environmental management: science and technology, 1, 107-126.
[9] Keiluweit, M., Nico, P. S., Johnson, M. G., Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science and technology, 44(4), 1247-1253.
[10] Khademalrasoul, A., Naveed, M., Heckrath, G., Kumari, K. G. I. D., de Jonge, L. W., Elsgaard, L., Iversen, B. V. (2014). Biochar effects on soil aggregate properties under no-till maize. Soil science, 179(6), 273-283.
[11] Khademalrasoul, A., Kuhn, N. J., Elsgaard, L., Hu, Y., Iversen, B. V., Heckrath, G. (2019). Short-term effects of biochar application on soil loss during a rainfall-runoff simulation. Soil science, 184(1), 17-24.
[12] Lehmann, J., Joseph, S. (2015). Biochar for environmental management: an introduction (pp. 33-46). Routledge.
[13] Lehmann, J. and Joseph, S. (2009) Biochar for environmental management, Science and technology, pp. 405. London: Earthscan publishing.
[14] Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and soil, 249(2), 343-357.
[15] Lehmann, J., Gaunt, J., Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2), 403-427.
[16] Lehmann, J., Lan, Z., Hyland, C., Sato, S., Solomon, D. and Ketterings, Q. M. (2005) Long term dynamics of phosphorus and retention in manure amended soils. Environmental science and technology, 39 (17), 6672-6680.
[17] Nematzadeh, M., Samimi, A., Shokrollahzadeh, S., Mohebbi-Kalhori, D. (2019). Bentazon removal from aqueous solution by reverse osmosis; optimization of effective parameters using response surface methodology. Advances in environmental technology, 5(4), 193-201.
[18] Niebes, D., Schobel, S., Schneider, R., Schróder, D. (2001). Sprinkling experiments to characterize the influence of land coverage, land use and different soil types on runoff generation. In geophysical research abstracts (Vol. 3).
[19] Novak, J. M., Busscher, W. J., Watts, D. W., Amonette, J. E., Ippolito, J. A., Lima, I. M., Schomberg, H. (2012). Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil science, 177(5), 310-320.
[20] Ouyang, L., Wang, F., Tang, J., Yu, L., Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition, 13(4), 991-1002.
[21] Pandian, M., Sivapirakasam, S. P., Udayakumar, M. (2011). Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Applied energy, 88(8), 2663-2676.
[22] Pellicone, G., Caloiero, T., Guagliardi, I. (2019). The De Martonne aridity index in Calabria (Southern Italy). Journal of mMaps, 15(2), 788-796.
[23] Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and fertility of soils, 48(3), 271-284.
[24] Ardebili, S. M. S., Solmaz, H., Calam, A., İpci, D. (2021). Modelling of performance, emission, and combustion of an HCCI engine fueled with fusel oil-diethylether fuel blends as a renewable fuel. Fuel, 290, 120017.
[25] Ardebili, S. M. S., Solmaz, H., Mostafaei, M. (2019). Optimization of fusel oil–Gasoline blend ratio to enhance the performance and reduce emissions. Applied thermal engineering, 148, 1334-1345.
[26] Ardebili, S. M. S., Taghipoor, A., Solmaz, H., Mostafaei, M. (2020). The effect of nano-biochar on the performance and emissions of a diesel engine fueled with fusel oil-diesel fuel. Fuel, 268, 117356.
[27] Singh, B., Dolk, M. M., Shen, Q., Camps-Arbestain, M. (2017). Biochar pH, electrical conductivity and liming potential. Biochar: A guide to analytical methods.
[28] Singh, B., Singh, B. P., Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil research, 48(7), 516-525.
[29] Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Husin, M. H. M., Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of analytical and applied pyrolysis, 107, 31-39.
[30] Solmaz, H., Ardebili, S. M. S., Calam, A., Yılmaz, E., İpci, D. (2021). Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method. Energy, 227, 120518.
[31] Tamri, Z., Yazdi, A. V., Haghighi, M. N., Abbas-Abadi, M. S., Heidarinasab, A. (2018). The effect of temperature, heating rate, initial cross-linking and zeolitic catalysts as key process and structural parameters on the degradation of natural rubber (NR) to produce the valuable hydrocarbons. Journal of analytical and applied pyrolysis, 134, 35-42.
[32] Vasseghian, Y. (2015). Modeling and optimization of oil refinery wastewater chemical oxygen demand removal in dissolved air flotation system by response surface methodology. Advances in environmental technology, 1(3), 129-135.
[33] Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and bioenergy, 84, 37-48.
[34] Walkley, A., Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
[35] Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and bioenergy, 47, 268-276.
[36] Wu, H., Qi, Y., Dong, L., Zhao, X., Liu, H. (2019). Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis. Chemosphere, 228, 264-270.
[37] Zhao, L., Li, Q., Xu, X., Kong, W., Li, X., Su, Y., Gao, B. (2016). A novel Enteromorpha based hydrogel optimized with Box–Behnken response surface method: synthesis, characterization and swelling behaviors. Chemical engineering journal, 287, 537-544.