Vertically aligned carbon nanotube membrane: synthesis, characterization and application in salt water desalination

Document Type : Research Paper


1 Department of Chemical Engineering, University of Bojnord, Bojnord, Iran.

2 Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.


Previous studies have used molecular dynamics simulation to assess the feasibility of applying vertically aligned carbon nanotube membranes (VA-CNT) for salt water desalination. The presented report experimentally determined the potential of salt water desalination by employing VA-CNT membranes. The VA-CNT membranes were synthesized through the template-assisted pyrolysis of polybenzimidazole-Kapton inside the pores of anodized aluminum oxide (AAO) and characterized by several techniques. The permeability, salt rejection, and biofouling tendency of VA-CNT membranes were measured in various operating conditions; the results were compared with the performance of a commercial reverse osmosis (RO) membrane (BW30). The VA-CNT membrane permeability was about twofold higher than the permeability of the RO membrane. Furthermore, the VA-CNT membranes had higher stability against biofouling phenomena; they also showed antibacterial activity so that about 70% of the adsorbed cells on the VA-CNT membranes were killed by CNTs tips that were vertically aligned on the membrane surface. The rejection efficiency of the VA-CNT membrane was comparable to that of the commercial RO membrane. Finally, the chlorine stability studies showed that high hypochlorite exposure (48000 ppm.h) did not significantly fail the flux and rejection of the VA-CNT membranes, confirming their chemical stability. This study shows the high capability of the VA-CNT membrane in the water treatment process.


Main Subjects

[1] Service, R. F. (2006). Desalination freshens up, Science, 313, 1088-1090.
[2] Gorjian, S., Ghobadian, B. (2015). Solar desalination: A sustainable solution to water crisis in Iran. Renewable and sustainable energy reviews, 48, 571-584.
[3] Anis, S. F., Hashaikeh, R., Hilal, N. (2019). Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, 452, 159-195.
[4] Elimelech, M., Phillip, W. A. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333(6043), 712-717.
[5] Semiat, R. (2008). Energy issues in desalination processes. Environmental science and technology, 42(22), 8193-8201.
[6] Shafi, H. Z., Matin, A., Khan, Z., Khalil, A., Gleason, K. K. (2015). Surface modification of reverse osmosis membranes with zwitterionic coatings: a potential strategy for control of biofouling. Surface and coatings technology, 279, 171-179.
[7] Sheikholeslami, R. (2007). Fouling in membranes and thermal units. 1st edition, L’Aquila: Balaban Desalination Publications.
[8] Potts, D. E., Ahlert, R. C., Wang, S. S. (1981). A critical review of fouling of reverse osmosis membranes. Desalination, 36(3), 235-264.
[9] Zhao, F., Xu, K., Ren, H., Ding, L., Geng, J., hang, Y. (2015). Combined effects of organic matter and calcium on biofouling of nanofiltration membranes. Journal of membrane science, 486, 177-188.
[10] Macedonio, F., Drioli, E., Gusev, A. A., Bardow, A., Semiat, R., Kurihara, M. (2012). Efficient technologies for worldwide clean water supply. Chemical engineering and processing: Process intensification, 51, 2-17.
[11] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., Moulin, P. (2009). Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, 43(9), 2317-2348.
[12] Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D., McGrath, J. E. (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of membrane science, 369(1-2), 130-138.
[13] Ma, T., Su, Y., Li, Y., Zhang, R., Liu, Y., He, M., Jiang, Z. (2016). Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. Journal of membrane science, 503, 101-109.
[14] Rana, D., Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical reviews, 110(4), 2448-2471.
[15] Yang, H. L., Chun-Te Lin, J., Huang, C. (2009). Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water research, 43(15), 3777-3786.
[16] Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.
[17] Park, S. H., Kim, S. H., Park, S. J., Ryoo, S., Woo, K., Lee, J. S., Lee, J. H. (2016). Direct incorporation of silver nanoparticles onto thin-film composite membranes via arc plasma deposition for enhanced antibacterial and permeation performance. Journal of membrane science, 513, 226-235.
[18] D. Mamadou, J.S. Duncan, N. Savage, A. Street, R.C. Sustich, Nanotechnology applications for clean water, 1 st ed., William Andrew publishing, New York, 2008.
[19] Goh, P. S., Ismail, A. F., Hilal, N. (2016). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination?. Desalination, 380, 100-104.
[20] Saleem, H., Zaidi, S. J. (2020). Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 475, 114171.
[21] Kar, S., Bindal, R. C., Tewari, P. K. (2012). Carbon nanotube membranes for desalination and water purification: Challenges and opportunities. Nano today, 7(5), 385-389.
[22] Ahn, C. H., Baek, Y., Lee, C., Kim, S. O., Kim, S., Lee, S., Yoon, J. (2012). Carbon nanotube-based membranes: Fabrication and application to desalination. Journal of industrial and engineering chemistry, 18(5), 1551-1559.
[23] Hinds, B. J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L. G. (2004). Aligned multiwalled carbon nanotube membranes. Science, 303(5654), 62-65.
[24] Majumder, M., Chopra, N., Andrews, R., Hinds, B. J. (2005). Enhanced flow in carbon nanotubes. Nature, 438(7064), 44-44.
[25] Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034-1037.
[26] Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. The journal of physical chemistry B, 112(5), 1427-1434.
[27] Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy and environmental science, 4(3), 751-759.
[28] Gourary, B. S., Adrian, F. J. (1960). Wave functions for electron-excess color centers in alkali halide crystals. In solid state physics (Vol. 10, pp. 127-247). Academic press.
[29] Conway, B. E. (1981). Ionic hydration in chemistry and biophysics.
[30] Lee, W., Ji, R., Gösele, U., Nielsch, K. (2006). Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature materials, 5(9), 741-747.
[31] H. Azami , M.R. Omidkhah, Synthesis of anti-biofouling vertically aligned carbon nanotube membrane for ultrafiltration, in:  The 12th international conference on membrane science and technology (MST2015), Tehran, Iran, 2015.
[32] Sarbolouki, M. N., Miller, I. F. (1973). On pore flow models for reverse osmosis desalination. Desalination, 12(3), 343-359.
[33] Pappenheimer, J. R., Renkin, E. M., Borrero, L. M. (1951). Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability. American journal of physiology-legacy content, 167(1), 13-46.
[34] Ferry, J. D. (1936). Statistical evaluation of sieve constants in ultrafiltration. The journal of general physiology, 20(1), 95-104.
[35] Renkin, E. M. (1954). Filtration, diffusion, and molecular sieving through porous cellulose membranes. The journal of general physiology, 38(2), 225-243.
[36] Wei, X., Wang, Z., Zhang, Z., Wang, J., Wang, S. (2010). Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5, 5-dimethylhydantoin, Journal of membrane science, 351(1-2), 222-233.
[37] Xu, J., Wang, Z., Yu, L., Wang, J., Wang, S. (2013). A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of membrane science, 435, 80-91.
[38] Azami, H., Omidkhah, M. R. (2017). Preparation, characterization, and application of vertically aligned CNT sheets through template assisted pyrolysis of PBI‐Kapton. The Canadian journal of chemical engineering, 95(2), 307-318.
[39] Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascon, J. M. (1998). Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. Journal of materials chemistry, 8(12), 2875-2879.
[40] Hosseini, S. S., Omidkhah, M. R., Moghaddam, A. Z., Pirouzfar, V., Krantz, W. B., Tan, N. R. (2014). Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Separation and purification technology, 122, 278-289.
[41] Kuncser, V., Palade, P., Kuncser, A., Greculeasa, S., Schinteie, G. (2014). Engineering magnetic properties of nanostructures via size effects and interphase interactions. In size effects in nanostructures (pp. 169-237). Springer, Berlin, Heidelberg.
[42] Zarbin, A. J., Bertholdo, R., Oliveira, M. A. (2002). Preparation, characterization and pyrolysis of poly (furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. Carbon, 40(13), 2413-2422.
[43] Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., Kalenczuk, R. J. (2008). Characterization of carbon nanotubes by Raman spectroscopy. Materials science-poland, 26(2), 433-441.
[44] Kuzmany, H. (2014). Phonon Structures and Raman Effect of Carbon Nanotubes and Graphene. Carbon nanotubes and graphene, 99-149.
[45] Reich, S., Thomsen, C. (2004). Raman spectroscopy of graphite. Philosophical transactions of the royal society of London. Series A: Mathematical, physical and engineering sciences, 362(1824), 2271-2288.
[46] Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascón, J. D. (1994). Raman microprobe studies on carbon materials. Carbon, 32(8), 1523-1532.
[47] Lotfi, R., Rashidi, A., Mohsennia, M. (2014). A rigorous comparison of methods for multi-walled carbon nanotubes purification using raman spectroscopy. Journal of petroleum science and technology, 4(1), 57-62.
[48] Murphy, H., Papakonstantinou, P., Okpalugo, T. T. (2006). Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. Journal of vacuum science and technology B: Microelectronics and nanometer structures processing, measurement, and phenomena, 24(2), 715-720.
[49] Shu-Sen, W. (1988). Effect of solution viscosity on ultrafiltration flux. Journal of membrane science, 39(2), 187-194.
[50] Mehdizadeh, H., Dickson, J. M., Eriksson, P. K. (1989). Temperature effects on the performance of thin-film composite, aromatic polyamide membranes. Industrial and engineering chemistry research, 28(6), 814-824.
[51] Baek, Y., Kim, C., Seo, D. K., Kim, T., Lee, J. S., Kim, Y. H., Yoon, J. (2014). High performance and antifouling vertically aligned carbon nanotube membrane for water purification. Journal of membrane Science, 460, 171-177.
[52] Sokhan, V. P., Nicholson, D., Quirke, N. (2002). Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. The journal of chemical physics, 117(18), 8531-8539.
[53] Kimura, S., Sourirajan, S. (1967). Analysis of data in reverse osmosis with porous cellulose acetate membranes used. AIChE journal, 13(3), 497-503.
[54] R.W. Baker (2004), Membrane technology and applications, Second edition ed., John Wiley and Sons, Ltd., Menlo Park, California.
[55] Zhu, Y., Gupta, K. M., Liu, Q., Jiang, J., Caro, J., Huang, A. (2016). Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination, 385, 75-82.
[56] Ibrahim, S. M., Xu, R., Nagasawa, H., Naka, A., Ohshita, J., Yoshioka, T., Tsuru, T. (2014). Insight into the pore tuning of triazine-based nitrogen-rich organoalkoxysilane membranes for use in water desalination. RSC Advances,4(45), 23759-23769.
[57] Matsuura, T. (1993). Synthetic membranes and membrane separation processes. CRC press.
[58] Tsuru, T., Miyawaki, M., Yoshioka, T., Asaeda, M. (2006). Reverse osmosis of nonaqueous solutions through porous silica‐zirconia membranes. AIChE journal, 52(2), 522-531.
[59] Zhu, B., Hong, Z., Milne, N., Doherty, C. M., Zou, L., Lin, Y. S., Duke, M. (2014). Desalination of seawater ion complexes by MFI-type zeolite membranes: temperature and long term stability. Journal of membrane science, 453, 126-135.
[60] Xu, R., Wang, J., Kanezashi, M., Yoshioka, T., Tsuru, T. (2013). Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE Journal, 59(4), 1298-1307.
[61] Gierer, A., Wirtz, K. (1953). Molecular theory of microfriction. Z. Naturforsch. A, 8, 532-538.
[62] von Recum, A. F. (Ed.). (1998). Handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials. CRC Press.
[63] Thomas, M., Corry, B., Hilder, T. A. (2014). What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?. Small, 10(8), 1453-1465.
[64] Hinds, B. (2012). Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform. Current opinion in solid state and materials science, 16(1), 1-9.
[65] Hirunpinyopas, W. (2019). Electrochemical applications for two-dimensional (2D) Materials: Self-assembly at liquid| liquid interfaces and assembled 2D material laminates. The university of manchester (United Kingdom), pp 640.
[66] Gong, X., Li, J., Xu, K., Wang, J., Yang, H. (2010). A controllable molecular sieve for Na+ and K+ ions. Journal of the American chemical society, 132(6), 1873-1877.
[67] Peter, C., Hummer, G. (2005). Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophysical journal, 89(4), 2222-2234.
[68] Peter, C., Hummer, G. (2005). Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophysical journal, 89(4), 2222-2234.
[69] Lin, J., Murad, S. (2001). A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Molecular physics, 99(14), 1175-1181.
[70] Park, J. H., Sinnott, S. B., Aluru, N. R. (2006). Ion separation using a Y-junction carbon nanotube. Nanotechnology, 17(3), 895.
[71] Balcajin, O., Noy, A., Fornasiero, F., Grigoropoulos, C. P., Holt, J. K., In, J. B., Park, H. G. (2009). Nanofluidic carbon nanotube membranes: applications for water purification and desalination. In nanotechnology applications for clean water (pp. 77-93). William Andrew Publishing.
[72] Song, C., Corry, B. (2009). Intrinsic ion selectivity of narrow hydrophobic pores. The Journal of physical chemistry B, 113(21), 7642-7649.
[73] Kalra, A., Garde, S., Hummer, G. (2003). Osmotic water transport through carbon nanotube membranes. Proceedings of the national academy of sciences, 100(18), 10175-10180.
[74] Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy and environmental science, 4(3), 751-759.
[75] Mauter, M. S., Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental science and technology, 42(16), 5843-5859.
[76] Hummer, G., Rasaiah, J. C., Noworyta, J. P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188-190.
[77] Ye, H., Zhang, H., Zhang, Z., Zheng, Y. (2011). Size and temperature effects on the viscosity of water inside carbon nanotubes. Nanoscale research letters, 6(1), 1-5.
[78] Whitby, M., Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature nanotechnology, 2(2), 87-94.
[79] Joseph, S., Aluru, N. R. (2008). Why are carbon nanotubes fast transporters of water? Nano letters, 8(2), 452-458.
[80] Pascal, T. A., Goddard, W. A., Jung, Y. (2011). Entropy and the driving force for the filling of carbon nanotubes with water. Proceedings of the national academy of sciences, 108(29), 11794-11798.
[81] M. Majumder, B. Corry, (2011) Anomalous decline of water transport in covalently modified carbon nanotube membranes, Chemical communication, 47 (2011) 7683–7685.
[82] Song, K., Gao, A., Cheng, X., Xie, K. (2015). Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydrate polymers, 130, 381-387.
[83] Dizaj, S. M., Mennati, A., Jafari, S., Khezri, K., Adibkia, K. (2015). Antimicrobial activity of carbon-based nanoparticles. Advanced pharmaceutical bulletin, 5(1), 19.
[84] Song, K., Gao, A., Cheng, X., Xie, K. (2015). Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydrate polymers, 130, 381-387.
[85] Kang, S., Herzberg, M., Rodrigues, D. F., Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 24(13), 6409-6413.
[86] Tangpasuthadol, V., Pongchaisirikul, N., Hoven, V. P. (2003). Surface modification of chitosan films: Effects of hydrophobicity on protein adsorption. Carbohydrate research, 338(9), 937-942.
[87] Al-Jumaili, A.,  Alancherry, S., Bazaka, K.,  Jacob, Mohan V. (2017). Review on the Antimicrobial Properties of Carbon Nanostructures. Materials, 10(9), 1-26.
[88] Mansouri, J., Harrisson, S., Chen, V. (2010). Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. Journal of materials chemistry, 20(22), 4567-4586.
[89] Matin, A., Khan, Z., Zaidi, S. M. J., Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination, 281, 1-16.
[90] Cadotte, J. E., Petersen, R. J., Larson, R. E., Erickson, E. E. (1980). A new thin-film composite seawater reverse osmosis membrane. Desalination, 32, 25-31.
[91] Bai, Y., Park, I. S., Lee, S. J., Wen, P. S., Bae, T. S., Lee, M. H. (2012). Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity. Colloids and surfaces B: Biointerfaces, 89, 101-107.
[92] Liu, S., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., Chen, Y. (2009). Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS nano, 3(12), 3891-3902.
[93] Kang, S., Mauter, M. S., Elimelech, M. (2008). Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental science and technology, 42(19), 7528-7534.
[94] Celik, E., Park, H., Choi, H., Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water research, 45(1), 274-282.
[95] Ajmani, G. S., Goodwin, D., Marsh, K., Fairbrother, D. H., Schwab, K. J., Jacangelo, J. G., Huang, H. (2012). Modification of low pressure membranes with carbon nanotube layers for fouling control. Water research, 46(17), 5645-5654.
[96] S.P. Chesters, N. Pena, S. Gallego, M. Fazel, M.W. Armstrong, F. del Vigo, (2011), Results from 99 sea water reverse osmosis (SWRO) membrane autopsies, in: IDA World Congress, Perth, Western Australia, pp. 1-10.
[97] Ni, L., Meng, J., Li, X., Zhang, Y. (2014). Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of membrane science, 451, 205-215.
[98] Glater, J., Hong, S. K., Elimelech, M. (1994). The search for a chlorine-resistant reverse osmosis membrane. Desalination, 95(3), 325-345.
[99] Li, H., Yu, P., Li, H., Luo, Y. (2015). The chlorination and chlorine resistance modification of composite polyamide membrane. Journal of applied polymer science, 132(10), 41584.
[100] Yang, J. C., Yen, C. H., Wang, W. J., Horng, J. J., Tsai, Y. P. (2010). Assessment of adequate sodium hypochlorite concentration for pre‐oxidization of multi‐walled carbon nanotubes. Journal of chemical technology and biotechnology, 85(5), 699-707.
[101] Skarzewski, J., Siedlecka, R. (1992). Synthetic oxidations with hypochlorites. A review. Organic preparations and procedures international, 24(6), 623-647.
[102] Liu, W., Zhang, J., Cheng, C., Tian, G., Zhang, C. (2011). Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co (II) from aqueous solutions. Chemical engineering journal, 175, 24-32.
[103] Ismail, A. F., Rana, D., Matsuura, T., Foley, H. C. (2011). Carbon-based membranes for separation processes. Springer science and business media