[1] Service, R. F. (2006). Desalination freshens up, Science, 313, 1088-1090.
[2] Gorjian, S., Ghobadian, B. (2015). Solar desalination: A sustainable solution to water crisis in Iran. Renewable and sustainable energy reviews, 48, 571-584.
[3] Anis, S. F., Hashaikeh, R., Hilal, N. (2019). Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, 452, 159-195.
[4] Elimelech, M., Phillip, W. A. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333(6043), 712-717.
[5] Semiat, R. (2008). Energy issues in desalination processes. Environmental science and technology, 42(22), 8193-8201.
[6] Shafi, H. Z., Matin, A., Khan, Z., Khalil, A., Gleason, K. K. (2015). Surface modification of reverse osmosis membranes with zwitterionic coatings: a potential strategy for control of biofouling. Surface and coatings technology, 279, 171-179.
[7] Sheikholeslami, R. (2007). Fouling in membranes and thermal units. 1st edition, L’Aquila: Bala‐ban Desalination Publications.
[8] Potts, D. E., Ahlert, R. C., Wang, S. S. (1981). A critical review of fouling of reverse osmosis membranes. Desalination, 36(3), 235-264.
[9] Zhao, F., Xu, K., Ren, H., Ding, L., Geng, J., hang, Y. (2015). Combined effects of organic matter and calcium on biofouling of nanofiltration membranes. Journal of membrane science, 486, 177-188.
[10] Macedonio, F., Drioli, E., Gusev, A. A., Bardow, A., Semiat, R., Kurihara, M. (2012). Efficient technologies for worldwide clean water supply. Chemical engineering and processing: Process intensification, 51, 2-17.
[11] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., Moulin, P. (2009). Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, 43(9), 2317-2348.
[12] Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D., McGrath, J. E. (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of membrane science, 369(1-2), 130-138.
[13] Ma, T., Su, Y., Li, Y., Zhang, R., Liu, Y., He, M., Jiang, Z. (2016). Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. Journal of membrane science, 503, 101-109.
[14] Rana, D., Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical reviews, 110(4), 2448-2471.
[15] Yang, H. L., Chun-Te Lin, J., Huang, C. (2009). Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water research, 43(15), 3777-3786.
[16] Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.
[17] Park, S. H., Kim, S. H., Park, S. J., Ryoo, S., Woo, K., Lee, J. S., Lee, J. H. (2016). Direct incorporation of silver nanoparticles onto thin-film composite membranes via arc plasma deposition for enhanced antibacterial and permeation performance. Journal of membrane science, 513, 226-235.
[18] D. Mamadou, J.S. Duncan, N. Savage, A. Street, R.C. Sustich, Nanotechnology applications for clean water, 1 st ed., William Andrew publishing, New York, 2008.
[19] Goh, P. S., Ismail, A. F., Hilal, N. (2016). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination?. Desalination, 380, 100-104.
[20] Saleem, H., Zaidi, S. J. (2020). Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 475, 114171.
[21] Kar, S., Bindal, R. C., Tewari, P. K. (2012). Carbon nanotube membranes for desalination and water purification: Challenges and opportunities. Nano today, 7(5), 385-389.
[22] Ahn, C. H., Baek, Y., Lee, C., Kim, S. O., Kim, S., Lee, S., Yoon, J. (2012). Carbon nanotube-based membranes: Fabrication and application to desalination. Journal of industrial and engineering chemistry, 18(5), 1551-1559.
[23] Hinds, B. J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L. G. (2004). Aligned multiwalled carbon nanotube membranes. Science, 303(5654), 62-65.
[24] Majumder, M., Chopra, N., Andrews, R., Hinds, B. J. (2005). Enhanced flow in carbon nanotubes. Nature, 438(7064), 44-44.
[25] Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034-1037.
[26] Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. The journal of physical chemistry B, 112(5), 1427-1434.
[27] Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy and environmental science, 4(3), 751-759.
[28] Gourary, B. S., Adrian, F. J. (1960). Wave functions for electron-excess color centers in alkali halide crystals. In solid state physics (Vol. 10, pp. 127-247). Academic press.
[29] Conway, B. E. (1981). Ionic hydration in chemistry and biophysics.
[30] Lee, W., Ji, R., Gösele, U., Nielsch, K. (2006). Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature materials, 5(9), 741-747.
[31] H. Azami , M.R. Omidkhah, Synthesis of anti-biofouling vertically aligned carbon nanotube membrane for ultrafiltration, in: The 12th international conference on membrane science and technology (MST2015), Tehran, Iran, 2015.
[32] Sarbolouki, M. N., Miller, I. F. (1973). On pore flow models for reverse osmosis desalination. Desalination, 12(3), 343-359.
[33] Pappenheimer, J. R., Renkin, E. M., Borrero, L. M. (1951). Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability. American journal of physiology-legacy content, 167(1), 13-46.
[34] Ferry, J. D. (1936). Statistical evaluation of sieve constants in ultrafiltration. The journal of general physiology, 20(1), 95-104.
[35] Renkin, E. M. (1954). Filtration, diffusion, and molecular sieving through porous cellulose membranes. The journal of general physiology, 38(2), 225-243.
[36] Wei, X., Wang, Z., Zhang, Z., Wang, J., Wang, S. (2010). Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5, 5-dimethylhydantoin, Journal of membrane science, 351(1-2), 222-233.
[37] Xu, J., Wang, Z., Yu, L., Wang, J., Wang, S. (2013). A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of membrane science, 435, 80-91.
[38] Azami, H., Omidkhah, M. R. (2017). Preparation, characterization, and application of vertically aligned CNT sheets through template assisted pyrolysis of PBI‐Kapton. The Canadian journal of chemical engineering, 95(2), 307-318.
[39] Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascon, J. M. (1998). Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. Journal of materials chemistry, 8(12), 2875-2879.
[40] Hosseini, S. S., Omidkhah, M. R., Moghaddam, A. Z., Pirouzfar, V., Krantz, W. B., Tan, N. R. (2014). Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Separation and purification technology, 122, 278-289.
[41] Kuncser, V., Palade, P., Kuncser, A., Greculeasa, S., Schinteie, G. (2014). Engineering magnetic properties of nanostructures via size effects and interphase interactions. In size effects in nanostructures (pp. 169-237). Springer, Berlin, Heidelberg.
[42] Zarbin, A. J., Bertholdo, R., Oliveira, M. A. (2002). Preparation, characterization and pyrolysis of poly (furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. Carbon, 40(13), 2413-2422.
[43] Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., Kalenczuk, R. J. (2008). Characterization of carbon nanotubes by Raman spectroscopy. Materials science-poland, 26(2), 433-441.
[44] Kuzmany, H. (2014). Phonon Structures and Raman Effect of Carbon Nanotubes and Graphene. Carbon nanotubes and graphene, 99-149.
[45] Reich, S., Thomsen, C. (2004). Raman spectroscopy of graphite. Philosophical transactions of the royal society of London. Series A: Mathematical, physical and engineering sciences, 362(1824), 2271-2288.
[46] Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascón, J. D. (1994). Raman microprobe studies on carbon materials. Carbon, 32(8), 1523-1532.
[47] Lotfi, R., Rashidi, A., Mohsennia, M. (2014). A rigorous comparison of methods for multi-walled carbon nanotubes purification using raman spectroscopy. Journal of petroleum science and technology, 4(1), 57-62.
[48] Murphy, H., Papakonstantinou, P., Okpalugo, T. T. (2006). Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. Journal of vacuum science and technology B: Microelectronics and nanometer structures processing, measurement, and phenomena, 24(2), 715-720.
[49] Shu-Sen, W. (1988). Effect of solution viscosity on ultrafiltration flux. Journal of membrane science, 39(2), 187-194.
[50] Mehdizadeh, H., Dickson, J. M., Eriksson, P. K. (1989). Temperature effects on the performance of thin-film composite, aromatic polyamide membranes. Industrial and engineering chemistry research, 28(6), 814-824.
[51] Baek, Y., Kim, C., Seo, D. K., Kim, T., Lee, J. S., Kim, Y. H., Yoon, J. (2014). High performance and antifouling vertically aligned carbon nanotube membrane for water purification. Journal of membrane Science, 460, 171-177.
[52] Sokhan, V. P., Nicholson, D., Quirke, N. (2002). Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. The journal of chemical physics, 117(18), 8531-8539.
[53] Kimura, S., Sourirajan, S. (1967). Analysis of data in reverse osmosis with porous cellulose acetate membranes used. AIChE journal, 13(3), 497-503.
[54] R.W. Baker (2004), Membrane technology and applications, Second edition ed., John Wiley and Sons, Ltd., Menlo Park, California.
[55] Zhu, Y., Gupta, K. M., Liu, Q., Jiang, J., Caro, J., Huang, A. (2016). Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination, 385, 75-82.
[56] Ibrahim, S. M., Xu, R., Nagasawa, H., Naka, A., Ohshita, J., Yoshioka, T., Tsuru, T. (2014). Insight into the pore tuning of triazine-based nitrogen-rich organoalkoxysilane membranes for use in water desalination. RSC Advances,4(45), 23759-23769.
[57] Matsuura, T. (1993). Synthetic membranes and membrane separation processes. CRC press.
[58] Tsuru, T., Miyawaki, M., Yoshioka, T., Asaeda, M. (2006). Reverse osmosis of nonaqueous solutions through porous silica‐zirconia membranes. AIChE journal, 52(2), 522-531.
[59] Zhu, B., Hong, Z., Milne, N., Doherty, C. M., Zou, L., Lin, Y. S., Duke, M. (2014). Desalination of seawater ion complexes by MFI-type zeolite membranes: temperature and long term stability. Journal of membrane science, 453, 126-135.
[60] Xu, R., Wang, J., Kanezashi, M., Yoshioka, T., Tsuru, T. (2013). Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AIChE Journal, 59(4), 1298-1307.
[61] Gierer, A., Wirtz, K. (1953). Molecular theory of microfriction. Z. Naturforsch. A, 8, 532-538.
[62] von Recum, A. F. (Ed.). (1998). Handbook of biomaterials evaluation: scientific, technical and clinical testing of implant materials. CRC Press.
[63] Thomas, M., Corry, B., Hilder, T. A. (2014). What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?. Small, 10(8), 1453-1465.
[64] Hinds, B. (2012). Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform. Current opinion in solid state and materials science, 16(1), 1-9.
[65] Hirunpinyopas, W. (2019). Electrochemical applications for two-dimensional (2D) Materials: Self-assembly at liquid| liquid interfaces and assembled 2D material laminates. The university of manchester (United Kingdom), pp 640.
[66] Gong, X., Li, J., Xu, K., Wang, J., Yang, H. (2010). A controllable molecular sieve for Na+ and K+ ions. Journal of the American chemical society, 132(6), 1873-1877.
[67] Peter, C., Hummer, G. (2005). Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophysical journal, 89(4), 2222-2234.
[68] Peter, C., Hummer, G. (2005). Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophysical journal, 89(4), 2222-2234.
[69] Lin, J., Murad, S. (2001). A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Molecular physics, 99(14), 1175-1181.
[70] Park, J. H., Sinnott, S. B., Aluru, N. R. (2006). Ion separation using a Y-junction carbon nanotube. Nanotechnology, 17(3), 895.
[71] Balcajin, O., Noy, A., Fornasiero, F., Grigoropoulos, C. P., Holt, J. K., In, J. B., Park, H. G. (2009). Nanofluidic carbon nanotube membranes: applications for water purification and desalination. In nanotechnology applications for clean water (pp. 77-93). William Andrew Publishing.
[72] Song, C., Corry, B. (2009). Intrinsic ion selectivity of narrow hydrophobic pores. The Journal of physical chemistry B, 113(21), 7642-7649.
[73] Kalra, A., Garde, S., Hummer, G. (2003). Osmotic water transport through carbon nanotube membranes. Proceedings of the national academy of sciences, 100(18), 10175-10180.
[74] Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy and environmental science, 4(3), 751-759.
[75] Mauter, M. S., Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental science and technology, 42(16), 5843-5859.
[76] Hummer, G., Rasaiah, J. C., Noworyta, J. P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188-190.
[77] Ye, H., Zhang, H., Zhang, Z., Zheng, Y. (2011). Size and temperature effects on the viscosity of water inside carbon nanotubes. Nanoscale research letters, 6(1), 1-5.
[78] Whitby, M., Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature nanotechnology, 2(2), 87-94.
[79] Joseph, S., Aluru, N. R. (2008). Why are carbon nanotubes fast transporters of water? Nano letters, 8(2), 452-458.
[80] Pascal, T. A., Goddard, W. A., Jung, Y. (2011). Entropy and the driving force for the filling of carbon nanotubes with water. Proceedings of the national academy of sciences, 108(29), 11794-11798.
[81] M. Majumder, B. Corry, (2011) Anomalous decline of water transport in covalently modified carbon nanotube membranes, Chemical communication, 47 (2011) 7683–7685.
[82] Song, K., Gao, A., Cheng, X., Xie, K. (2015). Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydrate polymers, 130, 381-387.
[83] Dizaj, S. M., Mennati, A., Jafari, S., Khezri, K., Adibkia, K. (2015). Antimicrobial activity of carbon-based nanoparticles. Advanced pharmaceutical bulletin, 5(1), 19.
[84] Song, K., Gao, A., Cheng, X., Xie, K. (2015). Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydrate polymers, 130, 381-387.
[85] Kang, S., Herzberg, M., Rodrigues, D. F., Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 24(13), 6409-6413.
[86] Tangpasuthadol, V., Pongchaisirikul, N., Hoven, V. P. (2003). Surface modification of chitosan films: Effects of hydrophobicity on protein adsorption. Carbohydrate research, 338(9), 937-942.
[88] Mansouri, J., Harrisson, S., Chen, V. (2010). Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. Journal of materials chemistry, 20(22), 4567-4586.
[89] Matin, A., Khan, Z., Zaidi, S. M. J., Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination, 281, 1-16.
[90] Cadotte, J. E., Petersen, R. J., Larson, R. E., Erickson, E. E. (1980). A new thin-film composite seawater reverse osmosis membrane. Desalination, 32, 25-31.
[91] Bai, Y., Park, I. S., Lee, S. J., Wen, P. S., Bae, T. S., Lee, M. H. (2012). Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity. Colloids and surfaces B: Biointerfaces, 89, 101-107.
[92] Liu, S., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., Chen, Y. (2009). Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS nano, 3(12), 3891-3902.
[93] Kang, S., Mauter, M. S., Elimelech, M. (2008). Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental science and technology, 42(19), 7528-7534.
[94] Celik, E., Park, H., Choi, H., Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water research, 45(1), 274-282.
[95] Ajmani, G. S., Goodwin, D., Marsh, K., Fairbrother, D. H., Schwab, K. J., Jacangelo, J. G., Huang, H. (2012). Modification of low pressure membranes with carbon nanotube layers for fouling control. Water research, 46(17), 5645-5654.
[96] S.P. Chesters, N. Pena, S. Gallego, M. Fazel, M.W. Armstrong, F. del Vigo, (2011), Results from 99 sea water reverse osmosis (SWRO) membrane autopsies, in: IDA World Congress, Perth, Western Australia, pp. 1-10.
[97] Ni, L., Meng, J., Li, X., Zhang, Y. (2014). Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of membrane science, 451, 205-215.
[98] Glater, J., Hong, S. K., Elimelech, M. (1994). The search for a chlorine-resistant reverse osmosis membrane. Desalination, 95(3), 325-345.
[99] Li, H., Yu, P., Li, H., Luo, Y. (2015). The chlorination and chlorine resistance modification of composite polyamide membrane. Journal of applied polymer science, 132(10), 41584.
[100] Yang, J. C., Yen, C. H., Wang, W. J., Horng, J. J., Tsai, Y. P. (2010). Assessment of adequate sodium hypochlorite concentration for pre‐oxidization of multi‐walled carbon nanotubes. Journal of chemical technology and biotechnology, 85(5), 699-707.
[101] Skarzewski, J., Siedlecka, R. (1992). Synthetic oxidations with hypochlorites. A review. Organic preparations and procedures international, 24(6), 623-647.
[102] Liu, W., Zhang, J., Cheng, C., Tian, G., Zhang, C. (2011). Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co (II) from aqueous solutions. Chemical engineering journal, 175, 24-32.
[103] Ismail, A. F., Rana, D., Matsuura, T., Foley, H. C. (2011). Carbon-based membranes for separation processes. Springer science and business media