[1] Sharma, A., Singh, Y., Gupta, S. K., Singh, N. K. (2021). Application of response surface methodology to optimize diesel engine parameters fuelled with pongamia biodiesel/diesel blends. Energy sources, part A: Recovery, utilization, and environmental effects, 43(2), 133-144.
[2] Shojae, K., Mahdavian, M. (2018). Improving the combustion and emission characteristics of ISM 370 diesel engine by hydrogen addition and redesigning injection strategy. Advances in environmental technology, 4(2), 119-129.
[3] Ardebili, S. M. S., Solmaz, H., İpci, D., Calam, A., Mostafaei, M. (2020). A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel, 279, 118516.
[4] Calam, A. (2020). Effects of the fusel oil usage in HCCI engine on combustion, performance and emission. Fuel, 262, 116503
[5] Yusri, I. M., Mamat, R., Najafi, G., Razman, A., Awad, O. I., Azmi, W. H., Shaiful, A. I. M. (2017). Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions. Renewable and sustainable energy reviews, 77, 169-188.
[6] Ardebili, S. M. S. (2020). Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran. Renewable energy, 154, 29-37
[7] Ardebili, S. M. S., Khademalrasoul, A. (2020). An assessment of feasibility and potential of gaseous biofuel production from agricultural/animal wastes: a case study. Biomass conversion and biorefinery, 1-10.
[8] Solmaz, H. (2020). A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios. Fuel, 273, 117775.
[9] Najafi, G., Ghobadian, B., Tavakoli, T., Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and sustainable energy reviews, 13(6-7), 1418-1427.
[10] Ardebili, M. S., Ghobadian, B., Najafi, G., Chegeni, A. (2011). Biodiesel production potential from edible oil seeds in Iran. Renewable and sustainable energy reviews, 15(6), 3041-3044.
[11] Khedri, B., Mostafaei, M., Safieddin Ardebili, S. M. (2019). A review on microwave-assisted biodiesel production. Energy sources, part A: Recovery, utilization, and environmental effects, 41(19), 2377-2395.
[12] Azad, A. K., Rasul, M. G., Khan, M. M. K., Sharma, S. C., Mofijur, M., Bhuiya, M. M. K. (2016). Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: a nonedible oil sources in Australia. Renewable and sustainable energy reviews, 61, 302-318.
[13] Portugal-Pereira, J., Nakatani, J., Kurisu, K. H., Hanaki, K. (2015). Comparative energy and environmental analysis of Jatropha bioelectricity versus biodiesel production in remote areas. Energy, 83, 284-293.
[14] Mofijur, M., Masjuki, H. H., Kalam, M. A., Hazrat, M. A., Liaquat, A. M., Shahabuddin, M., Varman, M. (2012). Prospects of biodiesel from Jatropha in Malaysia. Renewable and sustainable energy reviews, 16(7), 5007-5020.
[15] Yang, L., Takase, M., Zhang, M., Zhao, T., Wu, X. (2014). Potential non-edible oil feedstock for biodiesel production in Africa: a survey. Renewable and sustainable energy reviews, 38, 461-477.
[16] Ibrahim, S. M. A., Abed, K. A., Gad, M. S. (2014). An experimental investigation of diesel engine performance using jatropha biodiesel. World applied sciences journal, 31(6), 998-1003.
[17] Alshammari, A. M., Adnan, F. M., Mustafa, H., Hammad, N. (2011). Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy. African journal of microbiology research, 5(6), 586-598.
[18] Fayyazi, E., Ghobadian, B., Mousavi, S. M., Najafi, G. (2018). Intensification of continues biodiesel production process using a simultaneous mixer-separator reactor. Energy sources, part a: Recovery, utilization, and environmental effects, 40(9), 1125-1136.
[19] Ardebili, S. M. S., Hashjin, T. T., Ghobadian, B., Najafi, G., Mantegna, S., Cravotto, G. (2015). Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green processing and synthesis, 4(4), 259-267.
[20] Marchetti, J. M., Miguel, V. U., Errazu, A. F. (2007). Possible methods for biodiesel production. Renewable and sustainable energy reviews, 11(6), 1300-1311.
[21] Crudo, D., Bosco, V., Cavaglià, G., Grillo, G., Mantegna, S., Cravotto, G. (2016). Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation. Ultrasonics sonochemistry, 33, 220-225.
[22] Choedkiatsakul, I., Ngaosuwan, K., Assabumrungrat, S., Tabasso, S., Cravotto, G. (2015). Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production. Biomass and bioenergy, 77, 186-191.
[23] Azad, A. K., Islam, M. R. (2012). A renewable alternative bio-fuel source from Jatropha Curcus seeds oil: performance and emission study for DI diesel engine. International journal of advanced renewable energy research, 1(2), 126-32.
[24] Banapurmath, N. R., Tewari, P. G., Hosmath, R. S. (2008). Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renewable energy, 33(9), 1982-1988.
[25] Ozsezen, A. N., Canakci, M., Turkcan, A., Sayin, C. (2009). Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel, 88(4), 629-636.
[26] Utlu, Z., Koçak, M. S. (2008). The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions. Renewable energy, 33(8), 1936-1941.
[27] Piroonlerkgul, P., Laosiripojana, N., Adesina, A. A., Assabumrungrat, S. (2009). Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal. Chemical engineering and processing: process intensification, 48(2), 672-682.
[28] Mofijur, M., Rasul, M. G., Hyde, J. (2015). Recent developments on internal combustion engine performance and emissions fuelled with biodiesel-diesel-ethanol blends. Procedia engineering, 105, 658-664.
[29] Von Blottnitz, H., Curran, M. A. (2007). A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of cleaner production, 15(7), 607-619.
[30] Gharehghani, A., Asiaei, S., Khalife, E., Najafi, B., Tabatabaei, M. (2019). Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel–Biodiesel blend. Journal of cleaner production, 210, 1164-1170.
[31] Cavalcante, K. S., Penha, M. N., Mendonça, K. K., Louzeiro, H. C., Vasconcelos, A. C., Maciel, A. P., Silva, F. C. (2010). Optimization of transesterification of castor oil with ethanol using a central composite rotatable design (CCRD). Fuel, 89(5), 1172-1176.
[32] Azadbakht, M., Ardebili, S. M. S., Rahmani, M. (2021). A study on biodiesel production using agricultural wastes and animal fats. Biomass conversion and biorefinery, 1-7.
[33] Ghobadian, B., Yusaf, T., Najafi, G., Khatamifar, M. (2009). Diesterol: an environment-friendly IC engine fuel. Renewable energy, 34(1), 335-342.
[34] Mirbagheri, S. A., Ardebili, S. M. S., Kiani, M. K. D. (2020). Modeling of the engine performance and exhaust emissions characteristics of a single-cylinder diesel using nano-biochar added into ethanol-biodiesel-diesel blends. Fuel, 278, 118238.
[35] Ghobadian, B., Rahimi, H., Khatamifar, M. (2006). Evaluation of engine performance using net diesel fuel and biofuel blends. In the first combustion conference of Iran (CCT1). Tarbiat Modares University. February (pp. 15-16).
[36] Park, S. H., Youn, I. M., Lee, C. S. (2010). Influence of two-stage injection and exhaust gas recirculation on the emissions reduction in an ethanol-blended diesel-fueled four-cylinder diesel engine. Fuel processing technology, 91(11), 1753-1760.
[37] Wu, F., Wang, J., Chen, W., Shuai, S. (2009). A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels. Atmospheric environment, 43(7), 1481-1485.
[38] Dorado, M. P., Ballesteros, E., Arnal, J. M., Gomez, J., Lopez, F. J. (2003). Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel, 82(11), 1311-1315.
[39] Lapuerta, M., Armas, O., Garcia-Contreras, R. (2007). Stability of diesel–bioethanol blends for use in diesel engines. Fuel, 86(10-11), 1351-1357.
[40] Lin, B. F., Huang, J. H., Huang, D. Y. (2009). Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel, 88(9), 1779-1785.
[41] Basha, J. S., Anand, R. B. (2014). Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions. Alexandria engineering journal, 53(2), 259-273.
[42] Calam, A., Solmaz, H., Yılmaz, E., İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216.
[43] Ghobadian, B., Rahimi, H., Nikbakht, A. M., Najafi, G., Yusaf, T. F. (2009). Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable energy, 34(4), 976-982.
[44] Hagos, F. Y., Ali, O. M., Mamat, R., Abdullah, A. A. (2017). Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine. Renewable and sustainable energy reviews, 75, 1281-1294.
[45] Awad, O. I., Mamat, R., Ali, O. M., Othman, M. F., Abdullah, A. A. (2017). Experimental study of performance and emissions of fusel oil-diesel blend in a single cylinder diesel engine. International journal of engineering and technology, 9(2), 138.
[46] Yasin, M. H. M., Mamat, R., Ali, O. M., Yusop, A. F., Hamidi, M. A., Ismail, M. Y., Rasul, M. (2017). Study of diesel-biodiesel fuel properties and wavelet analysis on cyclic variations in a diesel engine. Energy procedia, 110, 498-503.
[47] Oberoi, H. S., Vadlani, P. V., Saida, L., Bansal, S., & Hughes, J. D. (2011). Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste management, 31(7), 1576-1584.
[48] Aydin, H., Bayindir, H. (2010). Performance and emission analysis of cottonseed oil methyl ester in a diesel engine. Renewable energy, 35(3), 588-592.
[49] Najafi, G., Ghobadian, B., Yusaf, T., Rahimi, H. (2007). Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid. American journal of applied sciences, 4(10), 756-764.
[50] Najafi, G., Ghobadian, B., Moosavian, A., Yusaf, T., Mamat, R., Kettner, M., Azmi, W. H. (2016). SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels. Applied thermal engineering, 95, 186-203.
[51] Noorollahi, Y., Azadbakht, M., Ghobadian, B. (2018). The effect of different diesterol (diesel–biodiesel–ethanol) blends on small air-cooled diesel engine performance and its exhaust gases. Energy, 142, 196-200.
[52] Pour, A. H., Ardebili, S. M. S., Sheikhdavoodi, M. J. (2018). Multi-objective optimization of diesel engine performance and emissions fueled with diesel-biodiesel-fusel oil blends using response surface method. Environmental science and pollution research, 25(35), 35429-35439.
[53] Singh, Y., Singla, A. (2015). Comparative analysis of jatropha and karanja-based biodiesel properties, performance and exhaust emission characteristics in an unmodified diesel engine. Pollution, 1(1), 23-30.
[54] Fontaras, G., Karavalakis, G., Kousoulidou, M., Tzamkiozis, T., Ntziachristos, L., Bakeas, E., Samaras, Z. (2009). Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel, 88(9), 1608-1617.
[55] Di, Y., Cheung, C. S., Huang, Z. (2009). Comparison of the effect of biodiesel-diesel and ethanol-diesel on the particulate emissions of a direct injection diesel engine. Aerosol science and technology, 43(5), 455-465.
[56] Mahla, S. K., Safieddin Ardebili, S. M., Mostafaei, M., Dhir, A., Goga, G., Chauhan, B. S. (2020). Multi-objective optimization of performance and emissions characteristics of a variable compression ratio diesel engine running with biogas-diesel fuel using response surface techniques. Energy sources, part a: Recovery, utilization and environmental effects, 1-18.
[57] Ardebili, S. M. S., Solmaz, H., Calam, A., İpci, D. (2021). Modelling of performance, emission, and combustion of an HCCI engine fueled with fusel oil-diethylether fuel blends as a renewable fuel. Fuel, 290, 120017.
[58] Senthilraja, R., Sivakumar, V., Thirugnanasambandham, K., Nedunchezhian, N. (2016). Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol–Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel. Energy, 112, 899-907.
[59] Sukjit, E., Herreros, J. M., Dearn, K. D., García-Contreras, R., Tsolakis, A. (2012). The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol-diesel blends. Energy, 42(1), 364-374.
[60] Devarajan, Y., Beemkumar, N., Ganesan, S., Arunkumar, T. (2020). An experimental study on the influence of an oxygenated additive in diesel engine fuelled with neat papaya seed biodiesel/diesel blends. Fuel, 268, 117254.
[61] Khalife, E., Tabatabaei, M., Demirbas, A., Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in energy and combustion science, 59, 32-78.
[62] Carraretto, C., Macor, A., Mirandola, A., Stoppato, A., Tonon, S. (2004). Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energy, 29(12-15), 2195-2211.
[63] He, Y., Bao, Y. D. (2005). Study on cottonseed oil as a partial substitute for diesel oil in fuel for single-cylinder diesel engine. Renewable energy, 30(5), 805-813.
[64] Lapuerta, M., Herreros, J. M., Lyons, L. L., García-Contreras, R., Briceño, Y. (2008). Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 87(15-16), 3161-3169.
[65] Enweremadu, C. C., Rutto, H. L. (2010). Combustion, emission and engine performance characteristics of used cooking oil biodiesel—a review. Renewable and sustainable energy reviews, 14(9), 2863-2873.
[66] Murillo, S., Miguez, J. L., Porteiro, J., Granada, E., Moran, J. C. (2007). Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86(12-13), 1765-1771.