[1] Ma, F., Hanna, M. A. (1999). Biodiesel production: a review. Bioresource technology, 70(1), 1-15.
[2] Huang, D., Zhou, H., Lin, L. (2012). Biodiesel: an alternative to conventional fuel. Energy procedia, 16, 1874-1885.
[3] Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., & Chong, W. T. (2014). Biodiesel conversion from high FFA crude jatropha curcas, calophyllum inophyllum and ceiba pentandra oil. Energy procedia, 61, 480-483.
[4] Ugbogu, A. E., Akubugwo, E. I., Uhegbu, F. O., Chinyere, G. C., Ugbogu, O. C., Oduse, K. A. (2013). Nutritional and chemical composition of Jatropha curcas (L) seed oil from Nigeria. International journal of biosciences, 3(5), 125-134.
[5] Rai, D. K., Lakhanpal, P. (2008). Jatropha curcas poisoning in pediatric patients, Mauritius. Internet journal of pediatrics neonatol, 8(2), 1-6.
[6] Dias, L.A.S., Missio, R.F. and Dias, D.C.F.S. (2012). Antiquity, botany, origin and domestication of Jatrophacurcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genetics and molecular research, 11(3), 2719-2728,
[7] Abdullah, B.M., Yusop, R.M., Solimon, J., Yousif, E. and Salih, N. (2013). Physical and chemichal peroperties analysis of Jatrophacurcus seed oil for industrial applications. World academy of science, Engineering and technology, 7(12), 893-896.
[8] Kirubakaran, M. and Arul, M.S.V. (2018). Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. Journal of environmental chemical engineering, 6(4), 4490–4503.
[9] Abdullah, S.H.Y.S., Hanapi, NHM., Azid, A., Umar, R., Juahir, H., Khatoon, H. and Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and sustainable energy reviews, 70, 1040–1051.
[10] Ma, Y., Wang, Q., Sun, X., Wu, C., Gao, Z. (2017). Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renewable energy, 107, 522-530.
[11] Choudhury, H. A., Goswami, P. P., Malani, R. S. and Moholkar, V. S. (2014). Ultrasonic biodiesel synthesis from crude Jatrophacurcas oil with heterogeneous base catalyst: Mechanistic insight and statistical optimization. Ultrasonics sonochemistry, 21(3), 1050–1064.
[12] Bernal, J. M., Lozano, P., García-Verdugo, E., Burguete, M. I., Sánchez-Gómez, G., López-López, Pucheault, G. M., Vaultier, M. and Luis, S. V. (2012). Supercriticalsynthesis of biodiesel. Molecules, 17(7), 8696-8719.
[13] Ju,
Y. H., Huynh,
L. H., Tsigie,
Y. A. and Ho,
Q. P. (2013). Synthesis of biodiesel in subcritical water and methanol.
Fuel,
105, 266-271.
[14] Kalva, A., Sivasankar, T. and Moholkar, V. S. (2009). Physical mechanism of ultrasound-assisted Synthesis of Biodiesel. Industrial and engineering chemistry research, 48(1), 534-544.
[15] Sahani, S., Banerjee, S. and Sharma, Y. C. (2018). Study of co-solvent effect on production of biodiesel from Schleichera Oleosa oil using a mixed metal oxide as a potential catalyst. Taiwan institute of chemical engineers, 86, 42–56.
[16] Luu,
P. D., Takenaka,
N., Luu,
B. V., Pham,
L. N., Imamura,
K. and Maeda,
Y. (2014). Co-solvent method produce biodiesel from waste cooking oil with small pilot plant.
Energy procedia,
61, 2822-2832.
[17] Roschat, W., Siritanon, Th., Kaewpuang, T., Yoosul, B. and Promarak, V. (2016). Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresource technology, 209, 343-350.
[18] Singh, V., Yadav, M. and Sharma, Y.C. (2017). Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel, 203, 360-369.
[19]
Shi, Z.,
Jiang, Y.,
Zhou, L. and Gao, J. (2017). Eggshell-derived catalyst for biodiesel production in the presence of acetone as co-solvent.
Energy sources, part A: recovery, utilization, and environmental effects,
39(3), 320-325.
[20] Kalva, A., Sivasankar, T. and Moholkar, V. S. (2009). Physical mechanism of ultrasound-assisted synthesis of Biodiesel. Industrial and engineering chemistry research, 48(1), 534-544.
[21] Deng, X., Fang, Z. and Liu, Y.H. (2010). Ultrasonic transesterification of JatrophaCurcas L. oil to biodiesel by a two-step process. Energy conversion and management, 51(12), 2802-2807.
[22] Bojan, S.G. and Durairaj, S.K. (2012). Producing biodiesel from high free fatty acid Jatropha curcas oil by two step method- an Indian case study. Sustainable energy and environment, 3, 63-66.
[23] Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M. and Liang, B. (2009). Production of biodiesel from Jatropha curcas L. oil. Computers and chemical engineering, 33(5), 1091-1096.
[24] Killner, M.H.M. Linck, Y. G., Danieli, E., Rohwedder, J.J.R. and Blümich, B. (2015). Compact NMR spectroscopy for real-time monitoring of a biodiesel production. Fuel, 139(1), 240-247.
[25] Official methods, of analysis of the American oil chemist,s society (AOCS), sampling and analysis of vegetable oil source materials 1957.
[26] Tippayawong, N., Sittisun, P. (2012). Continuous-flow transesterification of crude jatropha oil with microwave irradiation. Scientia Iranica, 19(5), 1324-1328.
[27] Ilham, Z., Saka, S. (2010). Two-step supercritical dimethyl carbonate method for biodiesel production from Jatrophacurcas oil. Bioresource technology, 101(8), 2735–2740.
[28] Banerjee, A., Chakraborty, R. (2009). Parametric sensitivity in transesterification of waste cooking oil for biodiesel production-A review. Resources, conservation and recycling, 53(9), 490–497.
[29] Salimon, J., Ahmed, W.A. (2012). Physicochemical characteristics of tropical Jatropha curcas seed oil. Sains Malaysiana, 41(3), 313–317.
[30] Supardan, M.D., Fahrizal, R., Moulana, D., Safrida, Satriana, Mustapha, W.A.W. (2017). Optimization of process parameter conditions for biodiesel Production by reactive extraction of Jatropha seeds. Journal of engineering science and technology, 12(3), 847-859.
[31] Dianursanti, Religia, P., Wijanarko, A. (2015). Utilization of n-hexane as co-solvent to increase biodiesel yield on direct transesterification reaction from marine microalgae. Procedia environmental sciences, 23, 412 – 420.
[32] Deng, X., Fang, Z., Liu, Y., Yu, C. (2011). Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy, 36(2), 777-784.
[33] Ayetor, G.K., Sunu, A. Parbey, J. (2015). Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas. Elaeis guineensis and Cocos nucifer. Alexandria engineering journal, 54(4), 1285-1290.
[34] Gaikwad, N. D., Gogate, P. R. (2015). Synthesis and application of carbon based heterogeneous catalysts for ultrasound assisted biodiesel production.
Green processing and synthesis,
4(1), 17-30.