Applying a network of high frequency ultrasonic transducers for removal of Reactive Red 120 dye from aqueous solution: experimental design and statistical analysis

Document Type : Research Paper


Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran


In this study a network of high frequency ultrasonic’s transducers without additives was introduced for removing the Reactive Red 120 dye from aqueous solution. pH, irradiation time, initial concentration and number of piezoelectric were input variables at constant temperature of 25 °C. The results revealed that the ultrasonic waves played an important role in cracking the hydrocarbon bonds due to the cavitation phenomenon and OH° attacks. The effects of the variables and their interactions were investigated by the central composite design (CCD) method as one of the response surface methodologies (RSM). Maximum dye removal’s efficiency (76.05%) was attained at initial concentration of 5 mg/l, irradiation time of 50 min; pH 10 and 5 ultrasonic’s transducers. It was in a good agreement with the experimental, 78%. Finally, to more evaluates, the RSM model was compared to the artificial neural network (ANN) model. Performance’s functions reported that the RSM was better than the ANN in predicting the dye removal’s efficiency (R%). 


Main Subjects

[1] schobanoglous, G., Burton, F., Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. Aufl. Boston: Hrsg. Metcalf and Eddy Inc.???
[2] Singh, K. P., Gupta, S., Singh, A. K., Sinha, S. (2010). Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite. Chemical engineering journal, 165(1), 151-160.
[3] Cheng, S., Zhang, L., Ma, A., Xia, H., Peng, J., Li, C., Shu, J. (2018). Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. Journal of environmental sciences, 65, 92-102.
[4] Merouani, S., Hamdaoui, O., Saoudi, F., Chiha, M., Pétrier, C. (2010). Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase. Journal of hazardous materials175(1-3), 593-599.
[5] Galán, J., Rodríguez, A., Gómez, J. M., Allen, S. J., Walker, G. M. (2013). Reactive dye adsorption onto a novel mesoporous carbon. Chemical engineering journal219, 62-68.
[6] Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of environmental management182, 351-366.
[7] Jain, R., Mathur, M., Sikarwar, S., Mittal, A. (2007). Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of environmental management85(4), 956-964.
[8] Monash, P., Pugazhenthi, G. (2009). Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption, 15(4), 390-405.
[9] Moghaddam, S. S., Moghaddam, M. A., Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. Journal of hazardous materials, 175(1-3), 651-657.
[10] Balla, W., Essadki, A. H., Gourich, B., Dassaa, A., Chenik, H., Azzi, M. (2010). Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. Journal of hazardous materials, 184(1-3), 710-716.
[11] Porter, J. J., Porter, R. S. (1995). Filtration studies of selected anionic dyes using asymmetric titanium dioxide membranes on porous stainless-steel tubes. Journal of membrane science, 01(1-2), 67-81.
[12] Georgiou, D., Metallinou, C., Aivasidis, A., Voudrias, E., Gimouhopoulos, K. (2004). Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochemical engineering journal, 19(1), 75-79.
[13] Ulson, S. M. D. A. G., Bonilla, K. A. S., de Souza, A. A. U. (2010). Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. Journal of hazardous materials, 179(1-3), 35-42.
[14] Yang, X., Wang, J., Zhao, X., Wang, Q., Xue, R. (2011). Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresource technology, 102(22), 10535-10541.
[15] Carvalho, C., Fernandes, A., Lopes, A., Pinheiro, H., Gonçalves, I. (2007). Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere, 67(7), 1316-1324.
[16] Kansal, S. K., Singh, M., Sud, D. (2007). Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of hazardous materials, 141(3), 581-590.
[17] Khataee, A. R., Safarpour, M., Zarei, M., Aber, S. (2012). Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. Journal of molecular catalysis A: Chemical, 363, 58-68.
[18] Chakrabarti, S., Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of hazardous materials, 112(3), 269-278.
[19] Khataee, A. R., Pons, M. N., Zahraa, O. (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. Journal of hazardous materials, 168(1), 451-457.
[20] Moon, B. H., Park, Y. B., Park, K. H. (2011). Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination, 268(1-3), 249-252.
[21] Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., Sekaran, G. (2011). Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281, 438-445.
[22] Huang, Y. H., Huang, Y. F., Chang, P. S., Chen, C. Y. (2008). Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. Journal of hazardous materials, 154(1-3), 655-662.
[23] Papić, S., Vujević, D., Koprivanac, N., Šinko, D. (2009). Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. Journal of hazardous materials, 164(2-3), 1137-1145.
[24]         Aleksić, M., Kušić, H., Koprivanac, N., Leszczynska, D., Božić, A. L. (2010). Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water the application of zeolite assisted AOPs. Desalination, 257(1-3), 22-29.
[25] Sun, J. H., Sun, S. P., Wang, G. L., Qiao, L. P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and pigments, 74(3), 647-652.
[26] Rosales, E., Pazos, M., Longo, M. A., Sanromán, M. A. (2009). Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chemical engineering journal, 155(1-2), 62-67.
[27]         Su, C. C., Pukdee-Asa, M., Ratanatamskul, C., Lu, M. C. (2011). Effect of operating parameters on the decolorization and oxidation of textile wastewater by the fluidized-bed Fenton process. Separation and purification technology, 83, 100-105.
[28]         Kansal, S. K., Singh, M., Sud, D. (2007). Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of hazardous materials, 141(3), 581-590.
[29]         Kasiri, M. B., Aleboyeh, H., Aleboyeh, A. (2008). Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environmental science and technology, 42(21), 7970-7975.
[30]         Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A. (2011). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water, air, and soil pollution, 215(1), 3-29.
[31]         Chakrabarti, S., Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of hazardous materials, 112(3), 269-278.
[32]         Badr, Y., Abd El-Wahed, M. G., Mahmoud, M. A. (2008). Photocatalytic degradation of methyl red dye by silica nanoparticles. Journal of hazardous materials, 154(1-3), 245-253.
[33]         Ljubas, D., Smoljanić, G., Juretić, H. (2015). Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation. Journal of environmental management, 161, 83-91.
[34] Salari D, Niaeia A, Aberb S, Rasoulifard MH. (2009). The continuous photoreactor. Journal of hazardous materials, 166, 61-6.
 [35] Iark, D., dos Reis Buzzo, A. J., Garcia, J. A. A., Côrrea, V. G., Helm, C. V., Corrêa, R. C. G., Peralta, R. M. (2019). Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource technology, 289, 121655.
[36]         Kiayi, Z., Lotfabad, T. B., Heidarinasab, A., Shahcheraghi, F. (2019). Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. Journal of hazardous materials, 373, 608-619.
[37]         Doust, A. M., Rahimi, M., Feyzi, M. (2015). Effects of solvent addition and ultrasound waves on viscosity reduction of residue fuel oil. Chemical engineering and processing: Process intensification, 95, 353-361.
[38]         Jaafarzadeh, N., Takdastan, A., Jorfi, S., Ghanbari, F., Ahmadi, M., Barzegar, G. (2018). The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. Journal of molecular liquids, 256, 462-470.
[39]         Shojaei, S., Nouri, A., Baharinikoo, L., Farahani, M. D., Shojaei, S. (2021). Removal of the hazardous dyes through adsorption over nanozeolite-X: Simultaneous model, design and analysis of experiments. Polyhedron, 196, 114995.
[40] Shaikh, W. A., Islam, R. U., Chakraborty, S. (2021). Stable silver nanoparticle doped mesoporous biochar-based nanocomposite for efficient removal of toxic dyes. Journal of environmental chemical engineering, 9(1), 104982.
[41] Swain, G., Singh, S., Sonwani, R. K., Singh, R. S., Jaiswal, R. P., Rai, B. N. (2021). Removal of Acid Orange 7 dye in a packed bed bioreactor: Process optimization using response surface methodology and kinetic study. Bioresource technology reports, 13, 100620.
[42] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley and sons.
[43] Myers RH, Montgomery DC. (2002) Response surface methodology: Process and product optimization using designed experiments. 2nd ed. USA: John Wiley and sons.
[44] Demuth, H. B., Beale, M. H. (2000). Neural network toolbox; for use with MATLAB; computation, visualization, programming; user's guide, version 4. Math works.
[45] Saharan, V. K., Badve, M. P., Pandit, A. B. (2011). Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chemical engineering journal, 178, 100-107.
[46] Mahamuni, N. N., Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics sonochemistry, 17(6), 990-1003.
[47] Goel, M., Hongqiang, H., Mujumdar, A. S., Ray, M. B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study. Water research, 38(19), 4247-4261.
[48] Ince, N. H., Tezcanli-Güyer, G. (2004). Impacts of pH and molecular structure on ultrasonic degradation of azo dyes. Ultrasonics, 42(1-9), 591-596.