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 Laboratory and field experiments have shown that dispersivity is one of the key 
parameters in contaminant transport in porous media and varies with elapsed time. 
This time-dependence can be shown using a time-variable dispersivity function. The 
advantage of this function as opposed to constant dispersivity is that it has at least 
two coefficients that increase the accuracy of the dispersivity prediction. In this 
study, longitudinal dispersivity values were obtained for the conservative NaCl solute 
transport in a laboratory porous medium saturated with tap water. The results 
showed that the longitudinal dispersivity initially increased with time (pre-
asymptotic stage) and eventually reached a constant value (asymptotic stage). Four 
functions were used to investigate the time variations of dispersivity: linear, power, 
exponential and logarithmic. In general, because of the linear increase of dispersivity 
during a long time of transport, the linear function with R2=0.97 showed better time 
variations than the other three functions; the logarithmic function, having an 
asymptotic nature, predicted the asymptotic stage successfully (R2=0.95). The ratio 
of the longitudinal dispersivity to the medium length was not constant during the 
transport process and varied from 0.01 to 0.05 cm with elapsed time. 
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1. Introduction 

Nowadays, groundwater is a valuable resource that is used 
for many purposes:  irrigation, drinking, domestic activities, 
etc. Unfortunately, this resource is exposed to 
contamination from agricultural chemicals (herbicides, 
pesticides and fertilizers), industrial wastes, leachate from 
landfills, and various human activities. In order to 
implement proper contaminant disposal methods, the 
prediction of the material distribution in the soil subsurface 
is necessary. Such a prediction needs methods that 
qualitatively and quantitatively describe the phenomena 
affecting the contaminant transport. The transport of 
dissolved contaminants in the subsurface is controlled by 
various mechanisms and is usually described using the 
advection-dispersion equation (ADE). In this equation, it is 
assumed that the movement of the dissolved contaminants 
includes advective and dispersive fluxes with constant 
dispersion and velocity [1]. The advective flux describes the 
solute movement with water flow, and the dispersive flux is 

caused by variations in the pore-water velocity due to the 
porous medium heterogeneity [2]. However, one of the 
disadvantages of the ADE is that it does not take into 
consideration dispersion variability. So, many studies solve 
this equation based on the assumption of time- and scale-
constancy of dispersion [3]. However, laboratory and field 
experiments show that the dispersivity and, thus, the 
pattern of solute distribution are time-dependent. So, the 
dispersivity increases linearly with elapsed time (pre-
asymptotic stage) and finally reaches a constant asymptotic 
value (asymptotic stage) [4]. This can affect the mechanism 
of solute transport. However, the time-variability of 
dispersivity in the heterogeneous porous media is a fully 
accepted issue by researchers. Field studies show that the 
variance of the mean travel distance increases non-linearly 
with elapsed time. This non-linear relationship is attributed 
to the heterogeneity of the porous media. To describe the 
solute transport in such medium, it is necessary to use time-
dependent dispersivity [5]. Glimm et al. [6] recommended 
using a time-variable dispersivity function in the ADE to 
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consider this non-linear relationship. Levy and Berkowitz [7] 
pointed out the early arrival times and long late time tails 
based on tracer test measurements, which is in contrast to 
the breakthrough curves predicted by the ADE. Such 
anomalous behavior is often attributed to the 
heterogeneity of the porous medium and the pre-
asymptotic stage [8]. When the dispersivity is considered as 
a constant parameter in transport processes, it means that 
the porous medium is a homogeneous system [9]. However, 
the ADE is still known as the main equation to describe the 
solute transport in porous media. On this basis, one of the 
methods to solve the problem of an inaccurate prediction 
of transport by the ADE is to define the dispersivity by 
considering its time-dependence. Thus, instead of using 
equations other than the ADE, dispersivity is introduced in 
the ADE as a time-variable function. This increases the 
applicability of the ADE in porous media. Moreover, in most 
experiments of limited duration, it is probable that the 
asymptotic stage is not reached at all. In such cases, the 
appropriate analysis of the experiments should be based on 
the time-variability of dispersivity [10-12]. Several studies 
have been conducted in the field of time-dependence of 
dispersivity. Basha and El-Habel [13] as well as Mustafa and 
Liao [14], assuming the time-dependence of the dispersion 
coefficient, presented an analytical solution for the one- 
and two-dimensional ADE, respectively. They used the 
linear, power and asymptotic functions to describe the 
time-variability of the dispersion coefficient. They 
concluded that a time-variable dispersion coefficient could 
be used to model the solute transport in heterogeneous 
hydrological systems. Srivastava et al. [15] and Sharma and 
Srivastava [16] presented analytical and numerical (finite 
difference) solutions for the one-dimensional ADE, 
respectively. They defined dispersivity by a time-variable 
exponential function for describing the time-variability of 
hydraulic conductivity. The results showed that their 
solutions could successfully predict the effect of 
heterogeneity on the solute transport. However, they only 
investigated the increase of dispersivity with time, 
neglecting the asymptotic stage. Zhou [9] used linear and 
non-linear fractal functions to describe the time-
dependence of dispersivity. He concluded that the fractal 
dimension has a significant effect on the breakthrough 
curve (BTC). So that the more its value is, the longer the 
BTC’s tailing will be [9]. Su et al. [3] analytically solved the 
ADE under three different boundary conditions. They 
defined the dispersion coefficient as a time- and scale- 
variable. For this purpose, they introduced a product of the 
power function of time, distance and velocity in the ADE, 
instead of a constant dispersion coefficient. The BTCs of the 
analytical solutions showed a good agreement with the 
results of the laboratory and field experiments. Kumar et al. 
[5], using a non-linear function, evaluated the time-
dependence of dispersivity of conservative solutes with a 
constant continuous source for a system of parallel 

fractures. Their results were consistent with the 
experimental study of Neretnieks et al. [10] and Moreno et 
al. [11]. Sharma et al. [17], assuming time- and scale-
dependent dispersion coefficients, used a finite volume 
method to solve the conservative solute transport 
equation. They assumed that dispersivity was linearly 
proportional to the mean travel distance (the mean travel 
distance is equal to the product of pore-velocity and time). 
Their results showed that this numerical model better 
simulated the radionuclide concentration profile than did 
the constant dispersion model. Natarajan [18] investigated 
the effect of time-dependent dispersion on non-linearly 
sorbed multi-species contaminants in porous media. He 
defined the dispersivity as a multiple of the mean travel 
distance. He concluded that the time-dependent 
dispersivity led to a higher concentration when compared 
to that obtained with the constant dispersivity. This 
occurred because the time-dependent dispersivity provided 
a significant dispersion coefficient, due to which the 
concentration was distributed in the medium in a much 
higher amount. However, since dispersion is one of the 
important phenomena in contaminant transport in porous 
media, the dispersivity variations with time, despite its 
certainty, is still open to study. According to our knowledge, 
there are no studies in the field of contaminant transport in 
porous media in which the various time-variable dispersivity 
functions are thoroughly compared with each other. 
Moreover, in most of the studies regarding the time-
dependence of dispersion, hypothetical data, rather than 
experimental observations, have been used to verify the 
accuracy of analytical and numerical models. In this study, 
the conservative NaCl solution was injected in a laboratory 
porous medium; then, the dispersivity values of NaCl were 
determined at different times of the experiment. The linear, 
power, exponential and logarithmic functions were fitted to 
the dispersivity-time curve to identify which one could 
better predict the time variations of dispersivity. 

2. Materials and methods 

2.1. Experimental setup 

The transport experiment was conducted in a cube-shaped 
metal box with the following dimensions: 200 cm length, 
100 cm width and 25 cm height. A rainfall simulator was 
installed on top of the box at a 60 cm height. There were 
two reservoirs to supply water and solution; each of them 
had its own pump. This box (main box) had two small boxes 
on both sides with the dimensions of 20 cm in length, 100 
cm in width and 40 cm in height; one box was for the solute 
injection and another for discharging the solute and keeping 
the porous medium saturated. Each of these small boxes 
had a hole in the center at the height of 20 cm in contact 
with the main box. The holes were covered by metal meshes 
to prevent particles entering from the main box into the 
small boxes. Two vertical pipes with adjustable heights were 
installed inside each of the small boxes to establish constant 
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hydraulic head. The pipes of the injection and discharge 
boxes were adjusted at the heights of 40 and 30 cm, 
respectively. Therefore, a 20 cm constant hydraulic head of 
NaCl solution was established in the injection box. Similarly, 
the constant hydraulic head of the discharge box was 10 cm. 
The concentration of the NaCl solution was 5 g/L. In order 
to get samples from the solute, 9 piezometers were 
installed at 20 cm horizontal intervals in the bottom of the 
main box. This box was filled with gravels that were 2-4 mm 
in diameter as the porous medium. The porous medium was 
completely saturated with tap water using a rainfall 

simulator. The concentration of the tap water (0.225 g/L) 
was considered negligible in the data analysis. Figure 1 
shows a schematic of the experimental setup, and Table 1 
gives the hydraulic conditions of the experiment. 

Table 1. Hydraulic conditions of the transport experiment in the 
porous medium. 

i (-)  ks (cm/min) q (cm/min) n (%) v (cm/min) 

0.05 1.9 0.095 22.12 0.43 
(i) hydraulic gradient, (ks) saturated hydraulic conductivity, (q) flow rate, 
(n) porosity, (v) pore-water velocity  

 

 

 
Fig. 1. Schematic of the transport experiment in the porous medium. 

(1) rainfall simulator, (2) solute inlet pipe in injection reservoir, (3)  solute outlet pipe in injection reservoir (to establish constant hydraulic 
head), (4) solute injection reservoir, (5) pump, (6) solute supply reservoir, (7) inlet hole in the interface of injection reservoir and porous 
medium, (8) porous medium, (9) outlet hole in the interface of porous medium and discharge reservoir, (10) water/solute outlet pipe in 
discharge reservoir (to establish constant hydraulic head), (11) tap water inlet pipe in discharge reservoir, (12) discharge reservoir, (13) 
tap water supply reservoir, (14) piezometers 

2.2. Transport experiment and determination of dispersivity 
at different times 

After establishing the hydraulic gradient between the solute 
inlet and outlet holes, the transport experiment began. The 
samples were taken from the piezometers at 15 min 
intervals using an EC-meter until the concentration of solute 
in all the piezometers become equal to that of the injected 
solute (5 g/L). Then, the values of the dispersion coefficient 
were estimated using the non-linear least-squares 
parameter optimization code CXTFIT2.1 of Toride et al. [19]. 
This code can inversely estimate the dispersion coefficients 
from the observed concentrations in the different locations 
and times through solving the one-dimensional ADE. The 
one-dimensional ADE for steady water flow in a rigid and 
saturated porous medium for a conservative solute is 
generally described as follows: 

∂c

∂t
=

∂

∂x
(DL

∂c

∂x
) − vL

∂c

∂x
 (1) 

where c is the solute concentration (ML-3), DL is the 
longitudinal hydrodynamic dispersion coefficient (L2/T), 
vL=q/n is the (constant) mean pore-water velocity (L/T) in 

which q is the flow rate (L/T) and n is the porosity (-), t is 
time (T), and x is distance from the injection source (L). The 
hydrodynamic dispersion includes the mechanical 
dispersion (due to the medium heterogeneity and the pore-
water velocity variations) and molecular diffusion (caused 
by the random collision of the molecules). However, the 
molecular diffusion is negligible compared to the 
mechanical dispersion [20] and thus, the hydrodynamic 
dispersion (also briefly called dispersion coefficient) is 
linearly proportional to the pore-water velocity. The factor 
of this proportionality, being considered as a medium 
constant [21] and a property of heterogeneity [22] is known 
as dispersivity (a).  

D = av (2) 

In the CXTFIT2.1, for properly fitting the observed 
concentrations and estimating the dispersion coefficients, 
an objective function (the sum of squared residuals, SSQ) is 
minimized: 

SSQ =∑[c(xi) − c′(xi, [vL, DL])]
2

N

i=1

 (3) 
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where c(xi) and c′(xi, [vL, DL] are the observed and 
estimated concentrations at the distance of xi from the 
injection source, respectively. The CXTFIT2.1 assesses the 
accuracy of the fitting by using the coefficient of 
determination (R2). 
The linear, power, exponential and logarithmic functions 
were chosen to describe the time-variability of the 
longitudinal dispersivity as follows: 

Linear  aL(t) = αt + β 

Power  aL(t) = αtβ 

Exponential aL(t) = αeβt 

Logarithmic aL(t) = α ln(t) + β 

where t is time, e is the Neper number (≈2.72) and ln is the 
natural logarithm (the logarithm to the base of e). α and β 
are the constants of these functions. 

2.3. Statistical criteria 

It is not efficient to use only the criteria based on the 
correlation between the observed and predicted data in 

analyzing the accuracy of the models, and thus, other 
criteria must also be used [23]. In this study, to assess the 
accuracy of the four time-variable functions in predicting 
the dispersivity at different times, the root mean square 
error (RMSE) was used in addition to the coefficient of 
determination (R2): 

(4) R2=
[∑ (Oi-O̅)(Pi-P̅)n

i=1 ]
2

∑ (Oi-O̅)
2n

i=1 ∑ (Pi-P̅)
2n

i=1

 

(5) RMSE=√∑
(Oi-Pi)

2

n

n

i=1

 

where Oi and Pi are the observed and predicted values and 
O̅ and P̅ are their mean values, respectively. n is the number 
of data pairs. If the precision of the model is high, then the 
value of R2 will be close to 1. The closeness of RMSE to 0 
indicates the low average error in the model, however, in 
the same unit as the variable. 

Table 2. Dispersivity values at different times. 

t (min) DL (cm2/min) R2 (-) aL (cm) t (min) DL (cm2/min) R2 (-) aL (cm) 

15 0.26 0.9826 0.61 360 2.39 0.9993 5.56 

30 0.27 0.9827 0.63 375 2.59 0.9979 6.02 

45 0.46 0.9932 1.08 390 2.72 0.9971 6.32 

60 0.48 0.9950 1.12 405 2.87 0.9973 6.68 

75 0.52 0.9966 1.21 420 3.01 0.9973 7.00 

90 0.57 0.9973 1.34 435 3.15 0.9973 7.33 

105 0.64 0.9980 1.48 450 3.29 0.9973 7.66 

120 0.71 0.9985 1.64 465 3.37 0.9942 7.87 

135 0.78 0.9987 1.82 480 3.70 0.9831 8.89 

150 0.87 0.9991 2.03 495 3.90 0.9788 9.07 

165 0.96 0.9991 2.24 510 4.06 0.9647 9.44 

180 1.05 0.9993 2.44 525 4.10 0.9647 9.54 

195 1.15 0.9991 2.68 540 4.15 0.9377 9.66 

210 1.25 0.9991 2.90 555 4.17 0.9377 9.70 

225 1.35 0.9991 3.13 570 4.20 0.9377 9.77 

240 1.46 0.9993 3.41 585 4.22 0.9377 9.81 

255 1.61 0.9988 3.75 600 4.24 0.9377 9.85 

270 1.71 0.9989 3.97 615 4.25 0.9377 9.89 

285 1.84 0.9986 4.28 630 4.25 0.9377 9.89 

300 1.96 0.9989 4.56 645 4.27 0.9377 9.92 

315 2.07 0.9987 4.81 660 4.28 0.9377 9.96 

330 2.13 0.9981 4.95 675 4.28 0.9377 9.96 

345 2.30 0.9979 5.34 690 4.30 0.9377 10.00 

3. Results and discussion 

Table 2 gives the fitted dispersion coefficients by the 
CXTFIT2.1 at different times along with corresponding 
dispersivity values. The R2 in this table reflects the 
goodness-of-fit. According to Equation (2), the dispersion 

coefficient was divided by the constant pore-water velocity 
to calculate the dispersivity(a) at different times. 
Figure 2 shows the four functions fitted on the dispersivity-
time curve. The α and β coefficients for the four functions 
were obtained using this figure. Therefore, the form of 
these functions will be as follows: 

Linear  aL(t) = 0.0165t − 0.1619 
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Power  aL(t) = 0.0262t0.9141 

Exponential aL(t) = 1.1045e0.0039t 

Logarithmic aL(t) = 3.3920 ln(t)
− 13.3180 

 

In Figure 2, it is observed that the dispersivity initially 
increases from the time zero to about the minute 525 (from 
0 to about 9.54 cm) until it reaches an approximately 
constant value. From this time until the end of the transport 
experiment, no significant increase occurs in its value (from 
9.54 to about 10.00 cm). This is exactly in accordance with 
the results of many studies [5,14,22]. In general, it has been 
concluded by several researchers in their experimental and 
theoretical studies that the dispersion phenomenon 
includes two important time stages. These stages include: 
(1) pre-asymptotic stage: the early times of the dispersion 
phenomenon in which the dispersivity grows linearly with 
time, and (2) asymptotic stage: the late times of the 
dispersion phenomenon when the dispersivity becomes 
constant. Now that the coefficients of the four functions are 
available, the dispersivity values can be estimated at 
different times. Figure 3 shows the dispersivity-time curves 
derived from the four functions along with the observed 
one. According to this figure and the values of R2 and RMSE 
in Table 3, in general, the dispersivities predicted by the 
linear function have the best fit to the observations with the 
highest R2 (0.97) and the least RMSE (0.52 cm). 

Table 3. Performance criteria of the four functions. 

  linear power  exponential Logarithmic 

R2 0.97 0.95 0.90 0.78 
RMSE 0.52 0.67 1.80 1.53 

 
After this function, the performance of the power function 
is satisfactory and better than that of the exponential and 
logarithmic functions. The logarithmic function fails to 
predict the dispersivity with an acceptable accuracy. The 
reason behind a good prediction by the linear function is 
that approximately 525 minutes of the transport process 
belong to the pre-asymptotic stage (linear growth of 
dispersivity), while the asymptotic stage extends only from 
the minute 525 to the minute 690 (the end of the transport 
experiment). This means that more than three-quarters of 
the transport duration belong to the pre-asymptotic stage. 
However, the disadvantage of the linear function is that it 
does not show the asymptotic stage. In other words, the 
dispersivity never reaches a constant value in the linear 
function and increases linearly. This means that from the 
minute 525 to the end of the experiment, the dispersivity 
varies from 8.50 to 11.22 cm, which is 1.22 cm more than 
the last observed dispersivity (10.00 cm). In the power 
function, since the time variable (t) has a power close to 1 

(0.9141) and a small factor (0.0262), the slope of the 
dispersivity growth is smoother than that of the linear 
function. As a result, the dispersivity value at the end of the 
transport experiment can be predicted with good accuracy 
(10.31 cm), which only has a 0.31 cm difference with the 
observed value. However, the power function fails to show 
the asymptotic stage appropriately because the dispersivity 
increases with the time, like the linear function. Despite 
having a curve of asymptotic nature, the exponential 
function is not suitable for predicting the asymptotic stage 
of dispersivity because it has a positive exponent that 
makes its asymptotic segment vertical while the asymptotic 
segment of the dispersivity-time curve is horizontal. As a 
result, the exponential function estimates the final 
dispersivity with a large difference in respect to the 
observed one (16.29 cm). 
The logarithmic function, having a curve of asymptotic 
nature with horizontal tailing, is suitable to predict the 
asymptotic stage of dispersivity. However, this function 
with an R2=0.78 has not properly shown the general trend 
of dispersivity. Since the accuracy of the four functions in 
predicting the pre-asymptotic and asymptotic stages are 
contradictory, separate analysis of these two stages can 
better describe the performance of the aforementioned 
functions. In the general analysis, the linear function is more 
accurate than the other three functions. Now, we 
investigate the dispersivity only at the asymptotic stage 
(i.e., from the minute 525 to the end). Figure 4 shows the 
four functions fitted on this stage. It is observed that the 
linear function is no longer the best fit; instead, the 
logarithmic function has a better fit than the other three. As 
previously mentioned, this occurs because of the 
asymptotic nature and the horizontal tailing of the 
logarithmic function. Basha and El-Habel [13] believed that 
an asymptotic dispersion function is more important and 
practical. So, they restricted their analysis regarding the 
solute transport to this function. However, they stated that 
to describe the solute transport, it is necessary to use a 
time-dependent dispersion coefficient at the onset of the 
transport in which dispersivity increases. In general, it 
seems that the use of the linear function is more suitable. 
Especially that this function has good predictions in most 
times of the dispersion phenomenon (the pre-asymptotic 
stage) because the dispersivity increases linearly with time 
before it reaches a constant value. In fact, all the mass 
initially moves with the mobile water. With time, more and 
more solute diffuses into the immobile water in the very 
small pores. This mass diffusion is gradual, and the time 
needed to achieve a constant-asymptotic dispersivity is 
relatively lengthy. 
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Fig. 2. The four time-variable functions fitted on the dispersivity-time curve. 

 

Fig. 3. Observed and predicted dispersivity-time curves.  
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Fig. 4. The four time-variable functions fitting on the asymptotic stage of the dispersivity-time curve. 

In several studies [24-27], it was assumed that the 
longitudinal dispersivity was approximately equal 0.1 to the 
medium length. However, in the previous sections it was 
found that the longitudinal dispersivity changed 
significantly with time. Therefore, the ratio of the 
longitudinal dispersivity to the medium length (aL/L) could 
not be considered constant in all the transport duration. 
Figure 5 shows this ratio at different times of the transport 
experiment. Note that the length of the porous medium (L) 
was 200 cm. According to this figure, the aL/L changed 
between 0.00 and 0.05 but did not reach 0.1. This occurred 

because the lab-scale dispersivity was several orders of 
magnitude smaller than the field-scale values for the same 
material. This difference was a reflection of the more 
heterogeneity in the field-scale that produced more 
irregular flow patterns [24]. The aL/L-time curve had a 
stepwise shape. Gelhar et al. [24] critically reviewed the 
dispersion data in aquifers and found that the longitudinal 
dispersivity ranged from 10-2 to 104 m for scales ranging 
from 10-1 to 105 m. Hence, it was not appropriate to assume 
a single value for the longitudinal dispersivity in a certain 
transport area. 

Fig. 5. The ratio of the longitudinal dispersivity to the medium 
length at different times. 

4. Conclusions 

Dispersion is caused by the heterogeneity of the porous 
media. Previous studies have shown that this phenomenon 
is time-dependent. This dependence can be shown using a 
time-variable dispersivity function. The advantage of using 
such a function instead of a constant dispersivity is that it 
has at least two fitting coefficients that increase the 
accuracy of description of dispersivity. The results of this 
study show that, in general, the linear function can better 
determine the time-variability of dispersivity than the 
power, exponential and logarithmic functions; this occurs 
because most of the transport duration is allocated to the 
pre-asymptotic stage (the linear increase of the 
dispersivity). However, in the asymptotic stage (the 
constant dispersivity), the accuracy of the logarithmic 
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function is mostly due to its asymptotic nature with a 
horizontal tailing. Also, the ratio of the longitudinal 
dispersivity to the medium increases with time. The results 
of this study can be useful for future research in the field of 
two- and three-dimensional transport, non-conservative 
solutes, etc. However, to determine the overall time-
dependence of dispersivity, various long-term experiments 
should be conducted on a large scale.  
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