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 The objective of this study was to investigate the growth rate of Chlorella vulgaris for 
CO2 biofixation and biomass production. Six mathematical growth models (Logistic, 
Gompertz, modified Gompertz, Baranyi, Morgan and Richards) were used to 
evaluate the biomass productivity in continuous processes and to predict the 
following parameters of cell growth: lag phase duration (λ), maximum specific 
growth rate (μmax), and maximum cell concentration (Xmax). The low root-mean-
square error (RMSE) and high regression coefficients (R2) indicated that the models 
employed were well fitted to the experiment data and it could be regarded as enough 
to describe biomass production. Using statistical and physiological significance 
criteria, the Baranyi model was considered the most appropriate for quantifying 
biomass growth. The biological variables of this model are as follows: μmax=0.0309 
h−1, λ=100 h, and Xmax=1.82 g/L. 
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1. Introduction 

Greenhouse gas release (CO2 being its major component) is 
a major environmental concern and mitigation of its release 
is becoming increasingly necessary. The use of a fast 
growing, photosynthetic biological micro-organism such as 
microalgae can provide such a solution. Microalgae can 
survive chiefly on nutrients such as sunlight and air (with 
increased CO2 levels), which makes it a desirable agent for 
CO2 sequestration and removal. The use of Chlorella 
vulgaris is a natural biological solution that is 
environmentally friendly and may produce useful by-
products [1-3]. Chlorella vulgaris is a freshwater unicellular 
species of the Chlorophyta with a fast growth rate relative 
to other microalgae species [4, 5] and it is also easy to 
cultivate [6]. It is cultivated as biomass and used in health 
foods, food supplements, and feed surrogates [7]. As well 
as consuming CO2 and producing oxygen like most 
photosynthetic microorganisms, Chlorella vulgaris has high 
chlorophyll content. Like many algae species, Chlorella 
vulgaris also contains oil that can be used to produce 

biodiesel with an average content of 28–32% [8]. The 
Chlorella species exhibit markedly lower growth rates under 
heterotrophic growth [9, 10] and given the need for an 
organic carbon source, it may be costly; therefore, it could 
be considered desirable to grow Chlorella vulgaris entirely 
photoautotrophically using a photobioreactor with an 
artificial light source when sunlight is not available [6]. 
Photosynthesis as a biological energy conversion system is 
a remarkable process from the viewpoint of energy 
accumulation. It is the most abundant energy-storing and 
life-supporting process on earth [6]. Photosynthesis is the 
light mediated conversion of carbon dioxide to organic cell 
materials. Carbon dioxide is consumed by microalgae and 
converted to carbohydrate and oxygen using solar energy. 
The specific growth rate of microorganisms has been shown 
to be affected by the substrate concentration. The results 
of various models have shown the prediction of microbial 
progression, optimization of growth conditions, biovolume 
and biomass productions as well as the assessment of 
microbial safety and quality in distinctive environmental 
conditions. Within the last few decades, several growth 
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models [11, 12] have been used to predict biomass and 
biovolume productions by microalgae during development. 
The process of growing curves of bacteria has significantly 
been described by predicting models [13, 14]. Some 
mathematical models such as Gompertz, Logistic, Richards, 
Schnute, and Stannard have been advanced to depict the 
entire microbial growth curve  
[14, 15]. The Sigmoidal development curve contains 
mathematical factors (a,b,c,...) rather than parameters with 
a biological meaning (A, μ, and λ) that are depicted by most 
of the equations. Three factors models such as the modified 
Gompertz and Logistic models are among the greatly used 
models which give biological factors such as lag time (λ), 
specific growth rate (μ), and asymptotic value (A) [12-14]. 
Such models can give important insight into the 
dependence of mass productivity on certain parameters of 
a photobioreactor. However, these models produce only 
qualitative information and cannot be extrapolated to other 
photobioreactor configurations, other strains, or even 
distinctive cultivation conditions [16]. Anjos et al. [17] 
proposed a second-order quadratic equation with CO2 
concentration and aeration rate as independent variables to 
investigate CO2 biofixation by C. vulgaris. Although this 
work did consider the dissociation of gaseous CO2 to 
dissolved carbon, it ignored the influence of light intensity 
on CO2 biofixation. Niizawa et al. [18] developed a model to 
predict the influence of light quality on the photon 
absorption rate of microalgal cultures, thus relating the 
influence of light quality on the growth rate. Çelekli and 
Yavuzatmaca [16] investigated the effects of nitrate and salt 
concentrations on biomass production by Spirulina 
platensis. According to their predictions by the modified 
Logistic model, the production rate (μ) and lag time (λ) for 
S. platensis ranged from 0.012–0.034 h-1 and 2.43–5.85 h, 
respectively. Lacerda et al. [19] evaluated the use of 
refinery wastewater on microalgae cultivation for CO2 
biofixation and biomass production in a bubble column 
photobioreactor. They used five mathematical growth 
models (Logistic, Gompertz, modified Gompertz, Baranyi, 
and Morgan) to estimate the biomass productivity in 
continuous processes and to predict the ensuing 
parameters of cell growth. The results showed that by 
employing statistical and physiological significance criteria, 
the modified Gompertz model was considered the most 
appropriate for quantifying biomass growth. Therefore, the 
primary goal of this study was the engineering of the 
separation of CO2 using the cultivation of the microalgae 
species Chlorella vulgaris; the main objectives of the study 
were (i) to predict the biomass production by using the 
equations of Logistic, Gompertz, modified Gompertz, 
Baranyi, Morgan, and Richards and (ii) to determine the 
models which describe the curve of biomass production. 

2. Materials and methods 

2.1. Microorganism and growth conditions 

The microalgal strain used in this study was Chlorella 
vulgaris and was obtained from the Biological Resource 
Center of the Institute of Materials and Energy, Iran. The 
stock culture was propagated and maintained in synthetic 
BG-11 medium [20] with the composition shown in Table 1. 
The incubation conditions employed were 25 °C, a photon 
flux density of 15 μmol·m−2.s−1, and a photoperiod of 12 h. 

Table 1. Composition of BG-11 medium 

Parameter Value 

NaNO3 (g/L) 1.50  

K2HPO4 (g/L) 0.04  

MgSO4.7H2O (mg/L) 75.0  

CaCl2.2H2O (mg/L) 36.0  

Citric acid (mg/L) 6.0  

Fe ammonium citrate (mg/L) 6.0  

Na2CO3 (mg/L) 20.0  

Na-EDTA (mg/L) 1.0  

H3BO3 (mg/L) 2.86  

MnCl2.4H2O (mg/L) 1.81  

ZnSO4.7H2O (mg/L) 0.22  

Na2MoO4.2H2O (mg/L) 0.39  

CuSO4.5H2O (μg/L) 79.0  

Co(NO3)2.6H2O (μg/L) 49.4  

pH 8 

2.2. Photobioreactor design 

The measurements were made in a draft-tube airlift 
photobioreactor (Figure 1). The system was made of 3.3 mm 
thick, transparent plexiglas, except for the lower 0.25 m 
regions that were made of stainless steel. This vessel had a 
15 cm internal diameter, a draft-tube internal diameter of 
10 cm, a height of 2 m, a riser-to-downcomer cross sectional 
area ratio of 0.8, and a nominal working volume of 20.0 L. 
The draft-tube was located 4 cm from the bottom of the 
reactor. The fluid was mixed by sparging with air through 
perforated sparger pipes (18 holes of 1mm diameter) 
(Figure 1). The reactor was continuously illuminated with 
sixteen 20 W fluorescent lamps connected in parallel, 
located in a photoperiod chamber. The different numbers 
of lamps on each lateral side of the photoperiod 
compartment were combined to give the desired light 
intensity. The airflow into the photobioreactor was supplied 
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via filtered air and pure CO2 cylinder through Teflon tubing. 
The CO2/air mixture was adapted to obtain the desired 
concentration of carbon dioxide in the airstream through 
three rotameters that calculated the flow rates of the 
carbon dioxide, the air, and the mixture of gases, 
respectively. 

2.4. Obtaining the kinetic data 

The experiments were carried out in a draft-tube airlift 
photobioreactor operating in batch mode, fed with 20.0 L of 
BG-11 medium. The experimental conditions were as 
follows: an initial cell concentration of 0.006 g/L, an 
isothermal reactor operating at 30 °C, a photon flux density 
of 1300 lux m−2, and continuous aeration of 1 VVM with the 
injection of air containing 4% carbon dioxide [21]. The cell 
concentration was monitored every 12 h during the 
microbial development phases. Residence times of up to 
168 h were used in the experiment. The test was done in 
duplicate and the kinetic data related to the mean of three 
repetitions. The cell concentration was estimated 
gravimetrically by filtering a known volume of culture 
medium through a 0.45 μm filter and drying it at 60 °C for 
24 h. 

 

Fig. 1. The configurations of the draft-tube airlift 
photobioreactor, all dimensions in cm. 

2.3. Mathematical models and statistical analysis 

Six mathematical growth models including the logistic, 
Gompertz, modified Gompertz, Baranyi, Morgan, and 
Richards were used. The logistic function model showed the 
growth of microbial populations as a function of time, initial 
population density, final population density, and growth 
rate. The original logistic function model was developed by 
Pearl and Reed [22] based on previous insights by Verhulst 
[23]. On the basis of these insights, the logistic expression 
became: 

𝑦 =
𝐴 + 𝐶

1 + 𝑒𝑥𝑝−𝐵(𝑡−𝑀)
 (1) 

where A is the asymptotic ln Xt/X0 as t decreases 
indefinitely, C is the asymptotic ln Xt/X0 as t increases 
indefinitely, B is the relative growth rate at time M (h−1), t is 
the time (h), M is the time at which the absolute growth rate 
is at its maximum (h), Xt is the cell concentration at time t 
(g/L), and X0 is the initial cell concentration (g/L). Many 
growth functions have been extracted from the classic 
model developed by Gompertz [24]. The original equation 
is represented by Eq. (2) and the lag phase is not 
considered: 

𝑦 = 𝐴 + 𝐶 𝑒𝑥𝑝−exp [−𝐵(𝑡−𝑀)] (2) 

where A is the asymptotic ln Xt/X0 as t decreases 
indefinitely, C is the asymptotic ln Xt/X0 as t increases 
indefinitely, B is the relative growth rate at time M (h−1), t is 
the time (h), M is the time at which absolute growth rate is 
at its maximum (h), Xt is the cell concentration in time t 
(g/L), and X0 is the initial cell concentration (g/L).The 
Gompertz expression was reparameterized by Zwietering 
and co-workers to comprise three biologically relevant 
parameters: lag phase duration, maximum specific growth 
rate, and maximum cell population [14]. This model can be 
represented by 

𝑦 = 𝐶 𝑒𝑥𝑝−exp [
𝜇𝑚𝑎𝑥 exp(1)

𝐶
(𝜆−𝑡)+1] (3) 

where C is the asymptotic ln Xt/X0 as t increases indefinitely, 
t is the residence time (h), μ is the specific growth rate (h−1) 
and λ is the lag phase duration (h), Xt is the cell 
concentration at time t (g/L), and X0 is the initial cell 
concentration (g/L). The Baranyi model is geometrically 
different since it shows a quasilinear segment during the 
exponential phase. In the model suggested by Baranyi et al. 
[25], the variation in cell population with time is described 
by a first-order differential equation. Roberts and Baranyi 
[26] derived solutions to this differential equation under 
specific conditions using six factors, and Baranyi in 1997 
reduced the solutions of this differential equation to three 
parameters (lag phase duration, specific growth rate, and 
cell population) [25-27]: 

𝑦 = 𝜇𝑚𝑎𝑥 𝐴(𝑡) − ln (1 +
𝑒𝑥𝑝(𝜇𝑚𝑎𝑥 𝐴(𝑡)) − 1

exp 𝐶
) (4) 

where 

𝐴(𝑡) = 𝑡 +
1

𝜇𝑚𝑎𝑥
𝑙𝑛(𝑒−𝜇𝑚𝑎𝑥𝑡 + 𝑒−𝜇𝑚𝑎𝑥𝜆

− 𝑒−𝜇𝑚𝑎𝑥(𝑡+𝜆)) 
(5) 

where C is the asymptotic ln Xt/X0 as t increases indefinitely, 
t is the time (h), μ is the specific growth rate (h−1), λ is the 
lag phase duration (h), Xt is the cell concentration at time t 
(g/L), and X0 is the initial cell concentration (g/L). The 
Morgan model is another expression usually used to 
describe biomass growth [28]. 
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𝑦 =
𝐶 𝑡𝜐

𝐾𝜐 + 𝑡𝜐
 (6) 

where C is the asymptotic ln of growth that occurs as t 
increases indefinitely, t is the time (h), K is the time at which 
half maximum growth is achieved (h), and ν is the curvature 
parameter. Furthermore, the Richards equation describes 
the growth of microbial populations as a function of initial 
population density, time, growth rate, final population 
density; lag phase duration, and specific growth rate [14]. 
On this basis, the Richards expression became 

𝑦 = {1 + 𝑣 exp(1 + 𝑣) exp [
𝜇

𝐴
(1 + 𝑣) (1 −

1

𝑣
) (𝜆

− 𝑡)]}
(−1 𝑣⁄ )

 
(7) 

where A is the asymptotic ln Xt/X0 as t decreases 
indefinitely, t is the time (h), μ is the specific growth rate 
(h−1), λ is the lag phase duration (h), Xt is the cell 
concentration at time t (g/L), X0 is the initial cell 
concentration (g/L), and ν is the curvature parameter. 
The doubling time (td) was calculated by using 

𝑡𝑑(𝑙𝑛2
𝜇⁄ ) (8) 

where td is the doubling time (h) and μ is specific growth 
rate (h−1). To estimate the parameters of the models, the 
Levenburg–Marquardt (LM) algorithm is still very 
important. A non-linear regression algorithm of LM was 
utilized to fit the rival equation expressions to the 
experimental results by minimizing the summation of the 
squares of the differences and estimation of the biological 
parameters (A, B, C, M, K, λ, μ, and td) and curvature 
parameter. The indices of the performance for the 
predictive models were investigated by the following 
mathematical and statistical equations as a function of 
model-predicted values (pred), experimental studied values 
(obs), mean of observed values (mean obs), and number of 
samples (n) [29]. 
Root mean square error (RMSE): 

𝑅𝑆𝑀𝐸 = √
∑(𝑜𝑏𝑠 − 𝑝𝑟𝑒𝑑)2

𝑛
 (9) 

Standard error of prediction (%SEP): 

%𝑆𝐸𝑃 =
100

𝑚𝑒𝑎𝑛 𝑜𝑏𝑠
√

∑(𝑜𝑏𝑠 − 𝑝𝑟𝑒𝑑)2

𝑛
 (10) 

Bias factor (Bf): 

𝐵𝑓 = 10
∑ 𝑙𝑜𝑔(

𝑝𝑟𝑒𝑑
𝑜𝑏𝑠

⁄ )

𝑛  (11) 

Accuracy factor (Af): 

𝐴𝑓 = 10
∑|𝑙𝑜𝑔(

𝑝𝑟𝑒𝑑
𝑜𝑏𝑠

⁄ )|

𝑛  (12) 

3. Results and discussion 

3.1. Predictive modeling 

Mathematical modeling has been used extensively to 
calculate cell growth through the estimation of the specific 
growth rate, duration of the lag phase and cell 
concentrations that are all needed in the study of microbial 
growth, and for use in industrial microbiology [12, 16]. The 
fit of the mathematical models to the optimized condition 
is shown in Figure 2. The analysis of the data shown was an 
unsatisfactory fit of the logistic, Gompertz, modified 
Gompertz, and Richards models to the experimental data. 
These models did not describe with accuracy the data 
obtained for Chlorella vulgaris. The Baranyi and Morgan 
models showed a good fit with the experimental data, so 
the goodness-of-fit or credibility of growth models needed 
mathematical evaluation before being put into practice 
[30]. The performance indices of the models tested are 
presented in Table 2. The RMSE provided an evaluation of 
the agreement between experimental data and the model. 
The best model agreement will have a decreased value of 
RMSE. The lowest values were seen with the Baranyi and 
Morgan models (0.160 and 0.111, respectively). The bias 
factor (Bf) gave an impartial indication of the best 
performance of the model. Ross [29] suggested that perfect 
concurrence between predictions and observations was 
represented by a Bf of 1. Higher or lower values indicated a 
systematic over or undervaluing of the observed values, 
respectively. The models describing the growth rate with Bf 
in the range of 0.973–1.006 could be considered good, the 
range of 0.7–0.9 or 1.06–1.15 was acceptable, and 0.7 or 
1.15 was undesirable. Again, the investigated values 
showed that the Baranyi and Morgan models (0.973 and 
0.997, respectively) presented the best fit. The accuracy 
factor showed the difference between the mean observed 
values and the predicted values. Increasing this factor 
resulted in a low capacity for the prediction of correctness 
between the estimated and true values. The values given by 
the Baranyi and Morgan models were closer to 1 (1.059 and 
1.030, respectively). The standard error of prediction 
(%SEP) approved the lower residuals of the Baranyi and 
Morgan models. Statistical analysis of the models showed 
that the Baranyi and Morgan models were the best 
equations to describe data on the growth of Chlorella 
vulgaris. Thus, it was necessary to evaluate the 
characteristics of each model to select the most fitting for 
the prediction. The selection criterion was the significance 
of model parameters [31]. The Baranyi model had 
parameters with physical significance (μ, λ, and Xmax) and 
the Morgan model was related to the curve fit and can't be 
physically interpreted. The Baranyi model more closely 
matched empirical data than other sigmoid functions data, 
both in terms of statistical accuracy and ease of use [32]. 
Therefore, the Baranyi model was selected to predict the 
growth of Chlorella vulgaris and was considered statistically 
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sufficient and robust enough to depict the data on the 
growth of the tested organism. The Baranyi model gives the 
following values for the growth parameters of the culture 
medium: μmax=0.0309 h−1, λ=-100 h and Xmax=1.82 g/L. The 
maximum biomass concentration of C. vulgaris obtained in 
this work was 1.82 ± 0.11 g/L for an incident light intensity 
of 1300 lux, and 4% (v/v) CO2 after 168 hours of incubation. 
A difference of 5.2% between the values of μmax calculated 
with the mathematical growth model and those obtained 
from the graph of (ln X) vs. (t) was observed. A negative lag 
phase was obtained for the alga in the Baranyi model. It was 
concluded that the acclimated algal culture was conveyed 
to the medium, which caused easy modification to 
environmental conditions. Indeed, Hodaifa et al. [33] 
remarked that the growth curve of S. obliquus showed no 
lag phases for all the experiments. The first phase was 
exponential growth during cultivations. In addition, Masson 
et al. [34] noticed that the negative signs of the lag time 
referred to no modification for microbial growth at 
environmental conditions. This value of the specific growth 
rate was in good agreement with Jacob-Lopes et al. [35] 
who reported a specific growth rate of 0.03 h-1 for a 
Aphanothece microscopica Nägeli strain grown at 30°C with 
a light intensity of 11 klux and 25% (v/v) CO2 in the feed gas. 
However, several studies have found lower values for C. 
vulgaris: Greque de Morais and Costa [36] reported a value 
of 0.010417 h-1 for C. vulgaris grown with 6% or 12% (v/v) 
CO2, a light intensity of 43 µmol m-2 s-1, and at 30°C. Chiu et 
al. [37] found a specific growth rate of 0.0125 h-1 at 5% (v/v) 
CO2, 26°C, and 300 µmol m-2 s-1 light intensity. In another 

work, Sinetova et al. [38] studied Cyanothece sp. ATCC 
51142 growth under different irradiance and they 
concluded that the specific growth rate for this 
cyanobacterium, in the exponential phase of the culture, 
was not dependent on light irradiance. On the contrary, 
they showed that the photosynthetic activity increased with 
light irradiance. Hulatt et al. [39] found a maximal biomass 
concentration of 3.79 ± 0.05 g/L with C. vulgaris and 3.60 ± 
0.74 g/L with Dunaliella tertiolecta (350 µmol m-2 s-1 light 
and 4% v/v CO2 for both algal species). Ho et al. [40] 
presented a maximal biomass concentration of 3.51 g/L for 
Scenedesmus obliquus (160 µmol m-2 s-1, 10% v/v CO2). 
Nevertheless, Chiu et al. [37] reported a maximal biomass 
concentration of 1.4 g/L for C. vulgaris cultivated at 2% (v/v) 
CO2 and a light intensity of 300 µmol m-2 s-1. The higher light 
intensity used in this last work could have led to photo 
inhibition of the culture, explaining the smaller biomass 
productivity compared with other results [37]. But these 
comparisons must be approached cautious due to the 
strong dependence of growth on many parameters: 
temperature, pH [8], medium composition [41], gas flow 
rate [42] and bioreactor design. CO2 biofixation by 
microalgae is related to the growth of algal cells [17, 43] and 
some desired products are accumulated during the 
exponential growth stage (e.g., DHA, astaxanthin, etc.) [44, 
45]. Thus, a thorough understanding of the time required 
for microalgae to reach the stationary phase can help to 
optimize the CO2 biofixation rate and guide the timing of 
harvest for useful products. 

Table 2. Predicted biological and curvature parameters (A, B, C, M, K, λ, μ, ν and td) and Data on statistical model validation from the 
primary models 

 Logistic Gompertz 
Modified 
Gompertz 

Baranyi Morgan Richards 

A 2.761 -39.953    5.758 

B 0.041 0.022     

C 2.761 45.693 5.603 5.710 10.212  

M (h) 23.60 -99.99     

K (h)     101.99  

λ (h)   -20.925 -100  -10.202 

μ (h−1)   0.0641 0.0309  4.708 

ν     0.541 -0.973 

td (h)   10.813 22.43   

RMSE 0.377 0.274 0.333 0.160 0.111 0.272 

Bf 1.006 0.993 1.0009 0.973 0.997 0.993 

Af 1.098 1.072 1.086 1.0588 1.030 1.071 

%SEP 9.81 7.136 8.670 4.184 2.899 7.100 

R2 0.941 0.969 0.954 0.989 0.994 0.969 
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Fig. 2. Growth of Chlorella vulgaris in B-11 culture medium. Continuous lines: predicted growth curves were obtained from 

logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards models. 

4. Conclusions 

Chlorella vulgaris is a freshwater unicellular species of the 
Chlorophyta which grows rapidly and is easily cultivated. In 
this study, the mathematical growth modeling of Chlorella 
vulgaris and the prediction of biomass productivity in a 
draft-tube airlift photobioreactor were investigated. The 
Baranyi and Morgan models were significantly better than 
the logistic, Gompertz, modified Gompertz, and Richards 
models to predict the biomass production of the species. 

The Baranyi model more closely matched the experimental 
data than the other sigmoid functions, both in terms of 
statistical accuracy and ease of use. The predicted data 
obtained from the model expressed maximum specific 
growth rates of 0.0309 h−1 and a maximum cell 
concentration of 1.82 g/L.  
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