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 Water quality causes severe restrictions on the utilization of water resources. 

Corrosion and scaling are the most common problems in the operation and 

maintenance of water facilities.  Corrosive indices are an indirect method of 

detecting and measuring water's tendency to corrosion and scaling. Water 

corrosion and scaling are complex phenomena that cannot be easily modeled. 

This study used meta-heuristics methods, such as artificial neural networks 

(ANN) and gene expression programming (GEP), to predict the water’s 

corrosion and scaling potential of the distribution network in some rural areas 

of Kermanshah Province. Equations were extracted to estimate water 

corrosion and scaling indices using linear regression and GEP. The results 

showed that ANN could reveal water corrosion and scaling indices with the 

highest correlation coefficient (0.95, 0.91, 0.96, 0.92, and 0.99) and the lowest 

percentage errors (0.20, 0.44, 0.40, 0.44, and 0.08) for the Langelier 

saturation index (LSI), Ryznar stability index (RSI), Puckorius scaling index 

(PSI), Aggressive index (AI), and Larson–Skold index (L-SI), respectively. Also, 

the linear and nonlinear relationships obtained by a high-precision GEP model 

(0.80 to 0.97) can estimate corrosion and scaling indices with lower cost and 

more accuracy by measuring the most influential physicochemical parameters . 
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1. Introduction 

Water quality is affected by physical, chemical, 

and biological changes due to human and natural 

factors in any region. Most of these changes are 

harmful and cause severe restrictions on the use of 

water resources. One of the most common 

problems in the operation and maintenance of 

water facilities, especially groundwater resources, 

is corrosion and scaling [1]. Corrosion is the primary 

cause of chemical property alteration, efficiency 

loss, and the reduction of the life span of water 

infrastructure. In addition, the substantial 

financial burden of water infrastructure due to 

corrosion, health, and safety costs for society 

https://creativecommons.org/licenses/by/4.0/
https://aet.irost.ir/


 A. Fatemi et al. / Advances in Environmental Technology 11(4) 2025, 396-413.   397 

should also be considered [2]. Currently, a 

significant percentage of the annual income of 

countries is allocated to corrosion and scaling 

issues. In the US more than $300 billion is spent 

annually on the corrosion, maintenance, or 

replacement of products [3, 4]. 

The study of urban treated water loss in Iran shows 

that more than 30% of distributed water is wasted 

annually due to decay caused by corrosion of water 

distribution pipes [5, 6]. The tendency of water’s 

corrosivity or scaling is determined by examining 

water stability. Stable water tends to have low 

corrosiveness and scaling; its values vary for use 

type [7]. Water corrosion and scaling indices 

indirectly detect and measure the water's tendency 

for corrosion and scaling. LSI, RSI, AI, PSI, and L-SI 

are the most common corrosion and scaling indices 

[8]. Using several of these corrosion and scaling 

indices simultaneously can provide a more 

confident water equilibrium status for control 

measures [9].  

This section explores research on the utilization of 

indices for assessing the potential of water’s 

corrosion and scaling. Gholizadeh et al. [10] 

evaluated the scaling and corrosion potential of 

groundwater resources in the Yazd-Ardakan Plain, 

Iran. Nayeria et al. [11] evaluated the scaling and 

corrosion potential of drinking water in the 

distribution network of Kermanshah City, Iran, 

during the 2018 winter and summer seasons. 

Fatemi et al. [12] studied the scaling and corrosion 

potential of drinking water in particular rural 

distribution networks in different climate zones of 

Kermanshah Province, Iran, from 2009 to 2017. 

Siddha and Sahu [13] evaluated the groundwater of 

Central Gujarat for industrial usage according to 

LSI, PSI, RSI, L-SI, corrosivity ratio (CR), Revelle 

index (RI), and chloride sulfate mass ratio (CSMR). 

Estimating the water's corrosion and scaling 

potential requires measuring many 

physicochemical parameters of water, which is 

costly and time-consuming. However, the complex 

phenomena of water's corrosion and scaling 

cannot be easily modeled due to various factors 

causing this complexity. The physical, chemical, 

and electrochemical reactions and processes are 

essential to predict and model corrosion. The 

modeling is based on these factors. Despite the 

mechanistic models' successes, some influential 

factors are unknown. Therefore, models that more 

accurately predict and model the potential of 

corrosion are needed [14]. 

Some researchers have examined the high ability of 

machine learning models to model complex and 

nonlinear systems in hydrology and water resources 

management-related problems across various 

regions [15, 16]. The studies have reported an 

accurate prediction of some water quality 

parameters using machine learning models. The 

use of the ANN model, with the increasing 

development of computational methods such as 

artificial intelligence, has been widely used in 

studies on the prediction of different parameters of 

water resources [17-19]. Researchers have 

emphasized the high accuracy of this method 

compared to experimental and regression 

relationships [20-23]. ANN is more valid because it 

uses proven formulas with minimal errors [24].  The 

GEP model is based on an evolutionary algorithm, 

used to estimate nonlinear phenomena based on 

mathematical relationships using a tree structure 

[25, 26]. So far, no study has been conducted to 

predict the water’s corrosion and scaling potential 

using ANN, GEP, or other machine-learning 

models.  

This study aimed to provide advanced and up-to-

date models to predict the corrosion and scaling 

potential of water in distribution networks in some 

rural areas of Kermanshah Province. ANN and GEP 

modeling were explored to identify the most 

influential physicochemical parameters of water. 

By achieving this goal, instead of measuring all the 

involved physicochemical parameters of water, it 

would be possible to accurately predict the 

corrosion and scaling potential of drinking water 

using fewer parameters. Consequently, time and 

costs would be reduced. Another objective was to 

develop equations that are more precise and 

feasible than empirical indices (LSI, RIS, AI, PSI, and 

L-SI) for predicting the corrosion and scaling 

potential of drinking water. 

2. Materials and Methods  

2.1. Study area 

Kermanshah Province is located at 33◦ 40′ and 35◦ 

18′ N latitude and 45◦ 24′ and 48◦ 07′ E longitude. 

This region has an area of about 25045 km2, with six 

types of climatic regions: cold semi-dry, warm 
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semi-dry, warm and dry, cold Mediterranean, 

moderate humid, and semi-humid climate zones 

(based on revised Embereger) (Figure 1). According 

to long-term meteorological data, the average 

annual temperature in the different climate zones 

ranges from 12.8 to 22.0◦C, and the annual rainfall 

is about 290–756 mm.

 

Fig. 1. Location of the study area in Kermanshah Province, Iran. 

2.2. Datasets 

Considering the different climatic zones of 

Kermanshah Province, 32 sampling datasets from 

stations located in five cities were obtained from 

the city’s hydraulic works. The datasets included 

results for corrosion characteristics that were 

monitored from 2009 to 2017: alkalinity, pH, 

calcium hardness, temperature (T), total dissolved 

solids (TDS)[27]. The presence of anions chlorine 

(Cl-), carbonate (CO3
2-), bicarbonate (HCO3

-), and 

sulfate (SO4
2-) were also included. The monitoring 

stations in Javanrood, Ravansar, Kermanshah, 

Sarpol-e-Zahab, and Qasr-e-Shireen contributed 

to moderate humid, cold Mediterranean, cold 

semi-dry, warm semi-dry, and dry and warm 

climate zones, respectively (Table 1). 

2.3 Water’s corrosion and scaling indices  

The LSI, RSI, PSI, AI, and L-SI indices were 

calculated using Equations 1 to 5 [8, 27, 28]. 

LSI = pH − pHs      (1)   

RSI =  2pHs − pH            (2) 

PSI = 2pHS − pHeq    (3) 

AI = pH +  log(Alk × H)AI = pH +  log(Alk × H)   (4)   

L − SI =
(SO4

2−+Cl−)

(HCO3
−+CO3

2−)
     (5) 

In these equations, pHs is the pH of water saturated 

with calcium carbonate, which was calculated 

using Equation 6 : 

pHs = (9.3 +  A +  B) − (C +  D)     (6) 

 ( )
 

 
 

( )1

3

A log TDS  1 /10

B 13.12  log T  273  34.55

C  log H  0.4

D  log T.Alk

Alk T.Alk mg L as CaCO−

= −

= −  + +

= −

=

=

 

In these equations, TDS is the total dissolved solids 

in terms of mg L-1, T, the temperature in °C, Ca2+ as 

CaCO3, H, calcium hardness, and T.Alk, total 

alkalinity in terms of calcium carbonate (mg L-1). 

To calculate pHeq (water saturation pH), Equation 

7 was used: 

pHeq =  1.465 × log(T. Alk) + 4.54      (7) 
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2.4. ANN  

The ANN is one of the subcategories of artificial 

intelligence for information processing inspired by 

the brain's biological nervous system. It processes 

information, in which millions of neurons may solve 

problems or store information by communicating 

with each other. The learning process in ANN is 

done through training using input and output data. 

A set of correct inputs and outputs is given to the 

network, and the ANN uses these inputs to create 

a complex mathematical model that produces the 

proper response in case of new inputs [29]. Neural 

networks consist of layers and are usually created 

in a regular form. Input information and data are 

entered into the first layer, which is the input layer. 

The middle, hidden, and last layers that provide the 

model output solutions are the output layers [30]. 

Many functions can be used to introduce non-

linearity in neural networks and also to create 

training data of the artificial neural networks, 

called transfer functions. These functions include 

Sigmoid, Gaussian, Hyperbolic tangents, and 

Hyperbolic secant [31].  

In this study, the effect of physicochemical 

parameters of water on water’s corrosion and 

scaling indices was investigated using an ANN. 

From the 146 series of information available for 

each parameter, 90 sets were used for training the 

model, 36 sets were used for validation, and 20 

groups were used for the final test of the model. 

Also, the Sigmoid function was selected as the 

transfer function to implement the model. This 

study used Qnet2000 software [32] to evaluate an 

ANN model for estimating the water’s corrosion 

and scaling indices. Neural networks used for the 

following indices had the lowest error percentage. 

The LSI and RSI indices' six input parameters were 

pH, TDS, T, Ca2+, CO3
2-, and HCO3

- with five nodes 

in the hidden layer. The schematic representation 

of the ANN for LSI is shown in Figure 2.  

Five input parameters were chosen for PSI (TDS, T, 

Ca2+, CO3
2-, and HCO3

-) and AI (pH, CO3
2-, HCO3

-, 

Ca2+, and Mg2+) with four nodes in the hidden layer. 

Four input parameters, including Cl-, SO4
2-, CO3

2-, 

and HCO3
- with three nodes in the hidden layer, 

were selected for L-SI. Then, the ANN model was 

implemented, and the simulation was carried out 

up to 10,000 times. These parameters were chosen 

to examine the influence of each parameter on the 

individual corrosion index. For this purpose, the 

contribution of each physicochemical parameter of 

water was evaluated using sensitivity analysis. The 

output of this part would help to develop new 

models to estimate the water’s corrosion and 

scaling potential. Afterward, linear relationships 

[30] between water corrosion and scaling indices 

and physicochemical parameters of water were 

investigated using SPSS 20.0 software (SPSS Inc., 

Chicago, Illinois, USA). 

 

 
Fig. 2. schematic representation of an artificial neural network for LSI 
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Table 1. The average amounts of physicochemical parameters of water in distribution networks in different climate 

zones of Kermanshah Province  

T.Alk**** H*** TDS**  T* pH SO4
2- Cl- HCO3

- CO3
2- Ca2+  EC   Climate zones 

mg L-1  0C  mg L-1  µmhos cm-1  

116.00 174.00 198.40  16.20 7.30 0.04 0.06 1.89 0.01 49.70  305.00 Min Moderate humid 

320.00 252.00 269.70  27.80 7.50 0.21 0.21 5.23 0.23 75.50  435.00 Max 

196.50 199.90 221.43  22.08 7.55 0.08 0.10 3.20 0.01 61.34  362.40 Mean 

41.01 24.93 26.74  4.12 0.15 0.03 0.03 0.67 0.01 8.86  43.51 SD 

150.00 174.00 217.00  13.50 7.40 0.03 0.07 2.64 0.01 47.50  350.00 Min Cold 

Mediterranean 
248.00 304.00 432.10  27.90 8.00 2.80 0.61 4.05 0.03 79.60  541.00 Max 

210.97 222.00 268.11  22.59 7.65 0.15 0.27 3.43 0.01 61.88  429.25 Mean 

22.09 25.45 40.04  4.35 0.18 0.38 0.27 0.36 0.01 8.12  71.29 SD 

178.00 168.00 220.00  17.00 7.00 0.05 0.01 2.96 0.00 41.80  348.00 Min Cold semi-dry 

206.00 204.00 228.74  25.40 8.30 0.16 0.94 4.08 0.05 65.70  371.00 Max 

199.48 202.90 228.68  22.62 7.70 0.13 0.15 3.27 0.02 46.47  319.00 Mean 

15.26 25.43 25.98  2.04 0.29 0.03 0.16 0.25 0.01 4.53  115.00 SD 

140.00 208.00 288.30  12.70 7.20 0.21 0.15 2.20 0.00 20.10  499.00 Min Warm semi-dry 

323.00 384.00 441.30  27.90 8.10 0.61 0.71 6.09 0.14 121.81  712.00 Max 

271.97 305.10 368.19  21.24 7.59 0.33 0.27 4.34 0.01 67.65  588.97 Mean 

40.25 40.18 39.75  4.52 0.18 0.12 0.13 1.04 0.02 28.61  55.78 SD 

220.00 238.00 289.40  12.50 7.60 0.15 0.10 3.50 0.01 55.30  467.00 Min Dry and warm 

284.00 282.00 305.40  27.10 7.80 0.22 0.61 4.60 0.03 68.10  483.00 Max 

247.16 264.83 295.63  19.28 7.70 0.19 0.17 4.02 0.02 64.86  476.16 Mean 

19.73 16.36 4.40  5.77 0.09 0.02 0.14 0.32 0.01 4.37  5.44 SD 

* Temperature; **Total Dissolved Solids; *** Hardness as CaCO3; 
****

 Total Alkalinity as CaCO3 

2.5. GEP 

The GEP method, introduced by Ferreira in 1999, is 

a meta-heuristic optimization algorithm to achieve 

a correct estimate of the goal variable. It is based 

on circulatory algorithms using Darwin’s 

evolutionary theory [33]. This method combines 

Genetic Programming (GP) and Genetic Algorithm 

(GA). This method combines linear and simple 

chromosomes with the same fixed length with GA 

and branched structures of different sizes and 

shapes, similar to decomposition trees in GP. In 

GEP, improvements occur in a linear structure and 

are then expressed as a tree structure, causing only 

the modified genome to be transferred to the next 

generation. Therefore, there is no need to replicate 

and mutate rather cumbersome structures [34]. In 

GEP, the information of chromosomes is decoded 

in a tree mode called translation. According to this 

process, chromosomes are called from left to right 

and from top to bottom [35]. Figure 3 represents 

the flowchart of a gene expression algorithm [36]. 

An example of translating a chromosome into a 

tree-shaped state is also shown in Figure 4 [37].  

The GEP method and GeneXprotools 4.0 software 

[38] were used to investigate the nonlinear 

relationships between water’s corrosion and 

scaling indices and physicochemical parameters of 

water. The GEP method was performed with two 

genes, the root relative squared error (RRSE) fitting 
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function, 95 educational samples, and 30 samples 

as a test, with a mutation rate of 0.066 and an 

inversion rate of 0.1. 

2.6. Statistical Indices 

Various evaluation criteria, i.e., correlation 

coefficient (r), maximum error (Max Error), mean 

square error (MSE), standard deviation (STD), root 

mean square error (RMSE), and mean absolute 

error (MAE) were used to assess the performance of 

models (Equations of 8-13): 

 

r =
Σ(xi − x̄)(yi − ȳ)

√Σ(xi − x̄)2∑(yi − ȳ)2
 

(8) 

where r is the correlation coefficient xi, and yi, are 

the values of the x and y variables, 𝑎𝑛𝑑 �̅� and �̅� are 

the mean of the values of the x and y variables. 

Max Error =
(X̂i−Xi)

X̂i
       (9)  

where Max error is the highest percentage of errors. 

MSE =
1

n
∑ (yi

n
i=1 − ŷi)

2     (10) 

where MSE is the mean square error, yi is the 

measured observation, �̂�𝑖is the predicted 

observation, and n is the number of observations. 

STD = √
∑(xi−x̄i)2

N
      (11)   

STD is a standard deviation that shows the distance 

of each observation (xi) from the average of 

observations (�̅�𝑖), and N is the number of 

observations. 

RMSE = √∑ (xi−x̂i)2N
i=1

N
       (12)   

In this equation, RMSE is the root mean square 

error, xi is the measured observation, x̂i is the actual 

observation, and N is the number of observations. 

MAE =
∑ |yi−xi|n

i=1

n
       (13) 

where MAE is the mean absolute error, yi is 

prediction, xi is true value, and n is the total number 

of data points. Generally, a robust model is 

characterized by a high R2 value and low error 

values. This means that the model can accurately 

reflect the essential relationships in the data and 

generate reliable predictions. 

3. Results and Discussion 

3.1. Water’s corrosion and scaling potential indices 

The water’s corrosion and scaling potential indices, 

including LSI, RIS, AI, PSI, and L-SI, were 

considered. LSI can qualitatively assess water 

potential in calcium carbonate deposition 

formation [39]. This index shows the effect of Ca2+, 

total alkalinity (T.ALK), TDS, and T in calculating 

saturated pH values. In other words, this index can 

be mentioned as pH changes to reach the water 

equilibrium [1].  

RSI is a modified type of LSI whose values are 

positive against LSI. This index  quantitatively 

indicates the dependence between calcium 

carbonate saturation and crust formation. The 

determinants of this index are specified by actual 

pH, the concentration of Ca2+ ions, HCO3
-, TDS, and 

T [40]. LSI and RSI show the difference between the 

actual pH of the water and the pH saturated by 

calcium carbonate [41]. The PSI, also known as the 

practical scaling index, shows the water’s corrosion 

and scaling potential. Unlike the other three 

indices, it is not associated with the actual pH of 

water. PSI values are affected by water buffering 

capacity, and equilibrium pH is used instead of 

actual water pH to calculate its effect [42, 43]. The 

AI is effective for asbestos cement pipes and for a 

temperature range of 4 to 27◦C. The AI is mainly a 

function of pH, Ca2+ concentration, and alkalinity 

[44]. The L-SI shows the impact of SO4
2-, Cl-, CO3

2-, 

and HCO3
- anions. CO3

2- and HCO3
- reduce the 

water’s corrosion, while Cl- and SO4
2- increase it 

[45].  

The water’s corrosion and scaling status based on 

the LSI is divided into three categories: scaling 

(LSI>0), neutral (LSI> 0.02), and corrosive (LSI<0). 

This classification for the RSI is as follows: scaling 

(RSI<5), neutral (5<RSI<7), and corrosive (RSI>7); 

as well, PSI has two forms of scaling: (PSI<6) and 

corrosive (PSI>6)[43]. The AI has low corrosion 

(AI>12), moderate corrosion (10<AI<12), and severe 

corrosion (AI<10). For the L-SI, the amounts (L-SI< 

0.8) of film formation (0.8<L-SI<2.1), low corrosion, 

and (L-SI> 1.2) high corrosion are considered [8, 27, 

46]. 
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Fig. 3. The flowchart of a gene expression algorithm [36] 
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Fig. 4. presentation of GEP chromosomes [37]. 

The results of studying the water's corrosion and 

scaling potential in different regions have shown 

that water is corrosive in many areas [47]. For 

instance, according to RSI and PSI, Gholizadeh et 

al. [10] reported low to moderate corrosivity of 

most groundwater resources in the Yazd-Ardakan 

Plain in Iran. On the other hand, the LSI and AI 

classified water as having a minor tendency to 

generate scale and as non-aggressive, respectively. 

They concluded that RSI and LSI, especially RSI, 

were more valuable than PSI and AI for the studied 

area. Taghavi et al. [48] assessed the corrosivity of 

Iranshahr's drinking water resources, reporting LSI 

values between -1.53 and -0.96, RSI from 9.63 to 

10.54, PSI from 9.05 to 10.68, and AI between 12.04 

and 12.91. These findings, coupled with those of 

Amouei et al. [49], who reported AI means of 6.17 

and 6.27, indicated a high percentage of corrosive 

water samples (82.2%–100%) based on various 

indices. 

Siddha and Sahu [13] evaluated the groundwater of 

Central Gujarat for industrial usage according to 

LSI, PSI, RSI, L-SI, corrosivity ratio (CR), Revelle 

index (RI), and chloride sulfate mass ratio (CSMR). 

According to LSI and PSI, most of the analyzed 

area's groundwater tended to scale in water 

distribution systems. 

Nayeria et al. [11] evaluated the scaling and 

corrosion potential of drinking water in the 

distribution network of Kermanshah City during 

2018 in the winter and summer seasons. According 

to their results, the drinking water distribution 

network tended to be corrosive. Fatemi et al. [12] 

studied the scaling and corrosion potential of 

drinking water in the particular rural distribution 

networks in different climate zones of Kermanshah 

Province from 2009 to 2017. Based on water 

characteristics in various climate zones, LSI and RSI 

were chosen as good indices for the water’s 

corrosion and scaling potential indices in different 

climate zones [12]. Gholizadeh et al. [10] reported 

the same results for groundwater resources in the 

Yazd-Ardakan Plain, Iran. They concluded that RSI 

and LSI, especially RSI, were more valuable than PSI 

and AI for the studied area. Siddha and Sahu [13] 

evaluated the groundwater of Central Gujarat for 

industrial usage according to LSI, PSI, RSI, L-SI, 

corrosivity ratio (CR), Revelle index (RI), and 

chloride sulfate mass ratio (CSMR). Based on LSI 

and PSI, the groundwater of a major portion of the 

studied area tended to be scaling in water 

distribution systems. 

3.2. ANN 

 The results of the ANN model for the water’s 

corrosion and scaling indices are shown in Table 2. 

As indicated in Table 2, ANN produced highly 

satisfactory correlation coefficient (R2) results. 

Also, a low level of maximum error in each subset 

and the MSE serve as a high level of confirmation of 

actual and predicted data. R2 values were generally 

over 0.94 and ranged from 0.88 to 0.99 within 

subsets (training, test, and recall). Additionally, 

the maximum percentage of error values for all the 

water's corrosion and scaling indices did not exceed 

4% (on average). The lowest MSE values of 0.00 and 

0.01 were yielded on testing and training data for 

L-SI, respectively. These findings are corroborated 
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by results from previous studies [22, 23, 50, 51]. The 

results of Kulisz and Kujawska [22] indicated a high 

level of conformity (R2 (general and within subsets) 

0.98, MSE in each subset (training, test, 

validation), along with RMSE at a level of 0.62) of 

the actual data of Warta River's WQI compared to 

those obtained during prediction by ANN. 

To gain more information on ANN and GEP 

applications for predicting water's corrosion and 

scaling potential, the literature regarding the use 

of these or other models in predicting water quality 

was reviewed. The results of the study [52] showed 

the high ability of neural networks to predict the 

underground water quality of the Birjand Plain by 

accurately estimating nitrate-sodium (R2=0.96), 

magnesium (R2=0.997), calcium (R2=0.93), and 

sodium (R2=0.98) concentrations. Moreover, it was 

revealed that ANN precisely estimated some 

water’s physico-chemical parameters which 

reviewed in the following. TDS of aquifers in the 

Tehran Plain (R2=0.96, NRMSE=0.175)[53]; EC, 

sodium absorption ratio (SAR), and TDS of the 

Karoun River [54]; and groundwater salinity 

(R2
training= 0.64, R2

validation=0.67 and R2
test=0.90) [4], 

EC, SAR, and TDS of underground water resources 

of the Mehran and Dehloran Plains [55] were 

predicted successfully by ANN. 

They reported that the coefficient of determination 

of EC, SAR, and TDS for training, validation, and 

testing was over 90 percent. Mirzavand et al. [56] 

simulated (with R2 values over 90 percent) the 

quality parameters of groundwater resources 

accurately in the Kashan Plain, which included the 

water table level, annual rainfall height, Cl- 

concentration in the previous year, and Cl- 

concentration in the current year using ANN. The 

results showed the high accuracy of the ANN model 

in prediction and simulation [56]. 

Table 2. The results of modeling water’s corrosion and scaling indices using an ANN model. 

Index Data R2* Max Error** MSE*** STD**** 

LSI Training Data 0.95 0.20 0.04 0.07 

Test Data 0.94 0.23 0.04 0.08 

RECALL 0.96 0.18 __ 0.08 

RSI Training Data 0.91 0.44 0.05 0.16 

Test Data 0.88 0.40 0.06 0.16 

RECALL 0.96 0.23 __ 0.08 

PSI Training Data 0.92 0.44 0.05 0.15 

Test Data 0.84 0.62 0.07 0.21 

RECALL 0.97 0.16  __ 0.06 

AI Training Data 0.96 0.40 0.03 0.06 

Test Data 0.93 0.30 0.04 0.09 

RECALL 0.99 0.08 __ 0.04 

L-SI Training Data 0.99 0.08 0.01 0.01 

Test Data 0.98 0.03 0.00 0.01 

RECALL 0.99 0.01  __ 0.00 

* Correlation Index ** Maximum error *** Mean square error ****Standard deviation 

Alaie et al. [17] investigated the water quality of 

the Neyshabur Plain by ANN and a fuzzy neural 

inference system . This study used quantitative and 

qualitative data on flow rate, temperature, CO3
2-, 

HCO3
-, and concentration of Cl-, SO4

2-, calcium 

(Ca2+), magnesium (Mg2+), and sodium (Na+) to 

estimate TDS. Mohammadi et al. [18] reported the 

high conformity between experimental and 

predicted data by the ANN model for fluoride (F-) 

concentrations in groundwater resources in Khaf, 
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Iran. In a study by Emami et al. [19], the water 

quality of the Jolfa Plain was examined by two 

methods, ANN and the Imperialist Competitive 

Algorithm (ICA). Kulisz and Kujawska [22] used 

ANN to predict the Warta River's surface water 

quality index (WQI) in 2014-2018. The high 

correlation coefficient of 0.9792, low MSE in 

subsets, and RMSE of 0.624507639 confirmed the 

accuracy of the model. The error for WQI values 

was below 4%, indicating a high level of conformity 

between real and predicted data. 

3.3. Sensitivity analysis 

The sensitivity analysis results of the 

physicochemical parameters of water input to the 

model for each corrosion and scaling index of water 

are shown in Figure 5. The influence of the pH, TDS, 

T, Ca2+, CO3
2- and HCO3

- parameters were 64.16, 

2.61, 22.99, 0.85, 0.77, and 8.62 percent, 

respectively, for the LSI (Figure 5). For the RSI, the 

highest participation and influence were related to 

pH parameters with a value of 49.69, and the 

lowest was related to Ca2+ with 0.61% . For RSI, the 

percentage of influence of parameters TDS, T, CO3, 

and HCO3
- was 2.05, 36.7, 5.8, and 5.15, 

respectively (Table 3). The influence of the TDS, T, 

Ca2+, CO3
2-, and HCO3

- parameters for the PSI was 

7.05, 29.33, 6.9, 11.03, and 45.69%, respectively 

(Figure 5). The sensitivity analysis results on the AI 

showed that the influence of pH, CO3
2-, HCO3

-, 

Ca2+, and Mg2+ parameters were 53.44, 1.45, 25.79, 

8.65, and 10.72, respectively (Table 3). The 

sensitivity analysis results on the L-SI showed that 

the influence of the Cl-, SO4
2-, CO3

2-, and HCO3
- 

parameters were 32.22, 58.38, 9.06, and 0.34, 

respectively (Figure 5).  

In general, the sensitivity analysis results 

demonstrated that pH was the most effective 

parameter, followed by temperature (T) for LSI and 

RSI. The pH and HCO3
- were determined as more 

effective parameters than the others for AI. In 

addition, the influence of HCO3
- was considerable 

for PSI and AI. However, TDS, CO3
2, Ca2+, and Mg2+ 

influences were generally less than the mentioned 

parameters for almost all the water's corrosion and 

scaling indices. The results of the study by Shah et 

al. [50] revealed that HCO3
- was the most sensitive 

parameter influencing both TDS and EC models. 

Alqahtani et al. [23] reported that sensitivity 

analysis showed that HCO3
− was the most effective 

variable, followed by Cl− and SO4
2− for both the EC 

and TDS predicted by the GEP, ANN, and random 

forest (RF) models. On the contrary, Aldrees et al. 

[21] reported that Cl- and HCO3
- had substantial 

impacts on the predictions of EC and TDS in the 

developed multi-expression programming (MEP) 

models. The water's most influential 

physicochemical parameters can be identified 

using machine learning models, thereby reducing 

costs and increasing prediction accuracy [57]. 

Hence, after determining the degree of influence of 

each of the physicochemical parameters of water, 

to determine equations that are capable of 

estimating the corrosion and scaling indices of 

water based on the simple models, several stages 

were introduced by eliminating the parameters 

with less influence. 

The correlation coefficient (R2) in the training 

stage, ANN test, and sensitivity analysis results for 

each of the models obtained are presented in Table 

3. The R2 coefficient values showed that the R2 

values between the models were relatively the 

same. On the other hand, removing parameters 

with less influence had no significant effect on the 

accuracy of the models presented for these indices. 

It helped to develop new equations with the least 

parameters, which are as accurate as empirical 

equations. The empty columns indicate the 

absence of the corresponding parameter in the 

studied index formula.  Using these new equations 

of the water’s corrosion and scaling indices with 

fewer physicochemical parameters, instead of all in 

empirical equations, helps to reduce costs. 

Since R2 values were obtained closely together 

(Table 3), linear relationships between corrosion 

and scaling indices and physicochemical 

parameters of water were investigated with the 

lowest number of effective parameters using the 

linear regression method. The results are reported 

in Table 4. The results also showed some 

significance and gave the lowest error, ranging 

from 0.06 to 0.24 in terms of root mean square 

error (MSE) for the equations (Table 4). 

 

.
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(c) (d) 

 

(e) 

Fig. 5. Comparison of the influence of each of the influencing parameters on water corrosion and scaling indices: a) 

LSI, b) RSI, c) PSI, d) AI, and e) L-SI. 

3.4. GEP 

In addition to the extracted relationships through 

linear regression presented in Table 4, the GEP 

method (the tree model) was also extracted to 

predict the water’s corrosion and scaling indices. 

The relationships between water’s corrosion and 

scaling potential that were estimated by the GEP 

method, and the physicochemical parameters of 

water are reported in Table 5. The results indicated 

a strong correlation R2 (0.84 to 0.97) for all the 

developed models. The GEP produced the lowest 

RSME (0.01) and MAE (0.01) for L-SI. Recent studies 

have shown that the GEP models are effective for 

the prediction of water chemical quality [22, 50, 

58]. 

 In research by Ghorbani and Salehi [59], the GEP method 

could predicate the changes in groundwater quality data 

in the Isfahan Barkhaar Plain, Iran. Furthermore, the 

acceptable performance of the GEP model with main 

mathematical operators has been shown by analyzing 

the relationship between quality variables and river 

discharge [51].  
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Table 3. A step-by-step investigation of the effect of the water’s physicochemical parameters on water corrosion and 

scaling indices by removing the less effective parameter of the previous step. 

R2
Training R2

Test HCO3
- CO3

2- Ca2+ Mg2+ SO4
2- Cl- T TDS pH Level Index 

  (mg L-1) °C (mg L-1)    

0.93 0.96 9.80  __ 0.87    19.23 4.52 65.58 1 LSI 

0.96 0.91 5.58  __  __    27.60 1.35 65.47 2 

0.95 0.92 2.99  __  __    30.22  __ 66.79 3 

0.94 0.94  __  __  __    33.81  __ 66.19 4 

0.90 0.88 3.68 2.09  __    38.51 6.18 49.31 1 RSI 

0.89 0.89 2.90  __  __    43.18 0.11 53.82 2 

0.91 0.88 3.38  __  __    44.63  __ 52 3 

0.91 0.84  __  __  __    45.62  __ 54.38 4 

0.92 0.89 62.06 14.49  __    6.23 17.22  1 PSI 

0.91 0.89 62.34 18.56  __     __ 19.01  2 

0.91 0.87 75.11  __  __     __ 24.89  3 

0.94 0.96 28.71 __ 3.88 11.89     55.51 1 AI 

0.96 0.90 34.89 __  __ 8.65     56.41 2 

0.94 0.89 39.19 __  __  __     60.81 3 

0.99 0.97 9.31  __   58.25 32.44    1 L-SI 

0.97 0.97  __  __   36.68 63.32    2 

The dash (_) indicates the removal of the low-effect parameter from the previous step. 

Shah et al. [50] reported the relative superiority of the 

GEP compared to ANN and linear and non-linear 

regression models for TDS and EC of the upper Indus River 

basin. A MEP-based predictive model for EC and TDS 

water quality parameters in the upper Indus River had 

better generalization capabilities than traditional non-

linear regression models [23]. 

Gholizadeh et al. [10] reported the same results for 

groundwater resources in the Yazd-Ardakan Plain, 

Iran. Therefore, the use of high-precision obtained 

relationships can predict the corrosion and scaling 

indices of water by only measuring the water's 

most influential physicochemical parameters. If 

the RMSE and MAE are closer to 0 and the 

correlation is closer to 1, the accuracy of GEP in 

predicting and modeling water corrosiveness and 

sedimentation indicators is higher [58]. The 

statistics showed that the accuracy of the models 

for L-SI, LSI and AI was higher than RSI and PSI. 

Also, RMSE, and MAE were very close to 0, their R2 

values were almost equal to 1 (Table 5). 

LSI is used to qualitatively assess water potential in 

calcium carbonate deposition formation [39]. This 

index shows the effect of parameters such as 

calcium, total alkaline, TDS, and temperature (T) 

in calculating saturated pH values. In other words, 

this index can be called the pH change required to 

reach water equilibrium [1]. RSI is the modified type 

of LSI, whose values are positive against the LSI 

type. This index quantitatively indicates the 

dependence between calcium carbonate 

saturation and film formation. The determinants of 

this index are specified by actual pH, the 

concentration of Ca2+, HCO3
- ions, TDS, and T [40]. 

LSI and RSI show the difference between the actual 

pH of the water and the pH saturated by calcium 

carbonate [41]. PSI, also known as the practical 

scaling index, shows the water’s corrosion or 

scaling potential and, unlike the other three 
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indices, is not associated with actual water pH. PSI 

values are influenced by water buffering capacity, 

and equilibrium pH is used instead of actual water 

pH to calculate its effect [42, 43]. AI is mainly a 

function of pH, calcium concentration, and 

alkaline [44]. The L-SI shows the effect of SO4
2-, Cl-

, CO3
2-, and HCO3

- ions. CO3
2- and HCO3

- reduce 

corrosion, while Cl- and SO4
2- increase water 

corrosion [45]. 

In general, the present study's findings are similar 

to those reported by [50]), Shah et al. [50] in which 

they found that GEP exceeded ANN and regression 

models for TDS and EC. They derived two equations 

to illustrate the GEP model's effectiveness in 

monitoring river water quality. In the last few 

decades, the advancements in the model's 

accuracy have improved the prediction of water 

quality. Artificial intelligence (AI) approaches, 

including ANN and GEP, are reliable for predicting 

and analyzing various complex engineering issues 

[60].  

Table 4. Linear relationships between water’s corrosion and scaling indices and high-impact physicochemical 

parameters of water.  

P Value Max Error MSE R2 £(x) Index 
*** 0.23 0.06 0.89 1.050 pH+0.003 T-8.397 LSI 
*** 0.45 0.14 0.80 -1.100 pH-0.005 T+16.793 RSI 
*** 0.45 0.24 0.80 -0.002 TDS-0.391 HCO3

-+8.767 PSI 
*** 0.55 0.06 0.93 1.043 pH+0.192 HCO3

-+3.679 AI 
*** 0.12 0.06 0.93 0.271 Cl-+0.259 SO4

2-+0.001 L-SI 

T is temperature (°C); TDS=total dissolved solids (mg L-1); HCO3-, Cl-, and SO42- the concentrations in (mg L-1) 

Table 5. Obtained relationships for water’s corrosion and scaling potential indices by GEP. 

RMSE MAE R2 £(x) Index 

0.08 0.06 0.89 pH + log(T)2 -16.096 LSI 

0.13 0.11 0.85 √pH+(pH/log T) -pH+8.485 RSI 

0.07 0.04 0.90  pH + log (HCO3
-) +e0.54 +log (pH+HCO3

-) AI 

0.16 0.13 0.80 (4.719-(HCO3
-)1/3)/log (HCO3

-) PSI 

0.01 0.01 0.97 √Cl-/6.75 L-SI 

T is temperature (°C); TDS=total dissolved solids (mg L-1); HCO3
-, Cl-, and SO4

2- the concentrations in (mg L-1) 

Regarding the management of non-linear data, 

ANN is a more successful method in comparison 

with conventional statistical techniques; therefore, 

prior research has indicated that ANN has a higher 

performance than conventional models, such as 

multivariate linear regression, particularly when 

complex interactions exist between variables [61]. 

Notably, ANN can accurately model complex non-

linear relationships, which is crucial for precise 

assessments of water quality [62]. ANN is capable 

of effectively modeling the multiple water quality 

parameters’ interactions. According to different 

approaches reviewed by [20]), ANN demonstrated 

reliability and acceptance in the field of river water 

quality modeling. Jassam et al. [63] highlighted 

ANN's capacity to integrate data from multiple 

sources, improving the accuracy of water quality 

index (WQI) predictions. This capability is crucial 

when water quality is affected in terms of 

numerous factors, such as temperature, salinity, 

and dissolved oxygen [64]. Haghiabi et al. [65] 

explained that ANN could be trained on historical 

data to provide accurate future predictions. 

Although regression coefficients provide useful 

information of the system under investigation, no 

procedures have been developed to extract such 

information from ANN parameters [20]. 

4. Conclusions  

This study investigated the prediction of water 

corrosion and scaling indices using ANN and GEP 

models. The results showed that ANN could 

reasonably provide a prediction of water corrosion 

and scaling indices with the highest correlation 
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coefficient (0.95, 0.91, 0.96, 0.92, and 0.99) and 

the lowest percentage errors (0.20, 0.44, 0.40, 

0.44, and 0.08) for LSI, RSI, AI, PSI, and L-SI, 

respectively. The sensitivity analysis showed the 

strength of the pH effect as the most effective 

water parameter on RSI, LSI, and AI. The most 

effective water parameters in PSI and L-SI were 

HCO3
- and SO4

2-, respectively. Furthermore, GEP 

models introduced linear and nonlinear 

relationships with high precision (0.80 to 0.97). The 

results of this study suggested that the established 

GEP models with selected key parameters could be 

prioritized to estimate the water's corrosion and 

scaling potential in different climate zones of the 

Kermanshah Province. It is recommended that 

future studies introduce new GEP models for each 

climate zone in the study area using the new larger 

datasets. 
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