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 Suspended sediment load is an indicator of erosion in watersheds. Therefore, 

accurately estimating the daily suspended sediment load (DSSL) is an 

important issue in river engineering. In this research, Artificial Neural Networks 

(ANN), Genetic Expression Programming (GEP) intelligent models, and the 

traditional Sediment rating curve (SRC) model were used to estimate DSSL in 

the Kasilian and Rood Zard watersheds in Iran. The input data to the models 

included instantaneous flow discharge (Q), average daily flow discharge (Qi), 

average daily flow discharge with a delay of three days (Qi-1,Qi-2,Qi-3), average 

daily precipitation (Pi), and average daily precipitation with a delay of three 

days (Pi-1,Pi-2,Pi-3); the output data was DSSL. In this research, the self-

organizing map (SOM) artificial neural network was used for data clustering, 

and gamma test (GT) methods were used to obtain the best combination of 

input variables to intelligent models. The results showed that the best models 

for estimating DSSL in the Kasilian and Rood Zard watersheds were respectively 

the ANN model with an activation function of tangent sigmoid with the best 

combination of input variables (Qi-1,Qi-2,Qi-3,Pi,Pi-1,Pi-2,Pi-3) and the GEP model 

with the input variables Qi,Qi-1,Qi-2,Pi,Pi-1,Pi-2,Pi-3. The statistical values of the 

ANN-tangent sigmoid model for the Kasilian watershed were MAE=231.4 (ton 

day-1), RMSE=578.6 (ton day-1), NSE =0.98, and R2=0.98; these values for the 

GEP model in the Rood Zard watershed were MAE=475.7 (ton day-1), 

RMSE=1671.9 (ton day-1), NSE=0.99, and R2=0.99. The SRC model in the Kasilian 

watershed with R2=0.34 and NSE=0.08 and the Rood Zard watershed with 

R2=0.59 and NSE=-0.11 showed the low accuracy of this model in estimating 

DSSL.  
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1. Introduction 

Erosion due to the degradation of forests and 

pastures, the changes in land use, and improper 

agriculture increase the sediment in rivers in the 

watershed. Eroded sediments, after entering the 

river, usually enter the reservoirs of dams and cause 

many problems, such as reducing the volume of the 

reservoir, reducing the reservoir water supply, flood 

control, etc. [1]. Therefore, accurately recognizing 

the amount of DSSL is very useful for soil 

management and protection, improvement of 

water quality, river engineering, and damping [2]. 

The estimate of DSSL is done directly and indirectly. 

In the direct method, the data do not have the 

required quantity and quality. The problems with 

data quantity are the lack of sufficient specialized 

personnel, the failure of sedimentation devices, 

and the high cost of direct measurement. Also, 

since most DSSL measurements are done at low 

flow discharge, the data does not have the required 

quality [3]. Due to the quantitative and qualitative 

problems of direct measurement of DSSL, methods 

for modeling and estimating it in watersheds are 

used. One of the methods used in this field is 
Sediment rating curve (SRC) [4]. SRC is a simple 

and traditional method for estimating DSSL. This 

method establishes regression assumptions, such 

as predicted mathematical relationships between 

variables, data normality, data independence, and 

data reliability [5]. Also, using the SRC, due to the 

conversion of data from logarithmic space to the 

arctic space, makes it possible to estimate high 

sediment values below the real value [6]. The 

relationship between the formation of DSSL in the 

river watershed and the physical, geochemical, and 

biological processes and human interventions that 

cause it are often very complex and nonlinear. All 

these factors are very difficult to estimate [7]. 

Hence, due to the lack of confidence in the SRC 

method to accurately estimate DSSL and the 

uncertainty in the full recognition of processes 

affecting the erosion and sedimentation of 

watersheds, the DSSL modeling is the focus rather 

than a quantitative relationship. It is important to 

pay attention to the response of the watershed to 

the input factors that create different behaviors in 

them. In this regard, the use of Artificial Neural 

Networks (ANN) and Genetic Expression 

Programing (GEP) are good tools for the accurate 

modeling of DSSL in watersheds [8,9,10]. Some 

researchers have used these models in a wide range 

of topics. Emamgholizadeh and Karimi Demneh [1] 

compared three intelligence models (GEP, ANN, 

and ANFIS models) with the SRC method. The data 

used were daily flow rate and sediment flow rate in 

two hydrometric stations of the Kasilian and Talar 

Rivers. Their results showed that all the intelligent 

models performed better in estimating suspended 

sediment load than the SRC method. Rajaee et al. 

[11] used Multilayer Perceptron Neural Network 

(MLP) models, multivariate linear regression, and 

SRC to estimate the amount of DSSL in black rivers 

in the United States. Daily flow discharge data were 

used as input and DSSL as output. The results 

showed that the MLP neural network model was 

more accurate than the regression and SRC models 

in DSSL estimation. To estimate the amount of 

DSSL in Rio Valenciano and Quebrada Blanca 

Stations in the United States, Kisi and Aytac [12] 

used linear genetic programming, ANN, and SRC 

models. The input and output data of the models 

were the flow discharge and Suspended sediment 

concentration (SSC), respectively. The results at 

both stations indicated the superiority of the linear 

genetic programming model compared to other 

models. Boukhrissa et al. [13]estimated the 

amount of DSSL of the El Kebir catchment in Algeria 

using two methods: SRC and ANN. The models used 

daily water discharge and daily suspended 

sediment data as inputs and outputs. Their results 

showed that the ANN model with R2=0.99 and 

RMSE=0.045 (ton day-1) had a more accurate 

estimate of DSSL. Sheikhipor et al. [14] examined 

suspended sediment load using GEP in the Sistan 

River during the statistical period from 1996 to 

2012. Results for the training data with RMSE=0, 

MBE=4.69×10-4, and R2=1, and those for the 

validation data with RMSE=0, MBE=2.4×10-4, and 

R2=1 represented the estimation of high accuracy 

DSSL using this method. Abbaspour et al. [15] 

compared the ANN and SRC methods to estimate 

the DSSL at Cham Anjir Hydrometric Station in 

Lorestan Province, Iran. Daily flow discharge and 

daily DSSL were used for modeling. The results 

showed that the ANN model had more power in 

estimating DSSL with MSE=0.0187 and R2=0.95. 

Joshi et al. [16] stated that the SSC had a nonlinear 
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relationship with the hydrological characteristics of 

the watershed. For this reason, the use of 

traditional SRC methods could not accurately 

estimate the SSC. As a result, they used ANN 

methods to model it. The region studied was the 

Gangotri glacier in the Himalayas. Their results 

showed that the ANN model with R2=0.81 and 

RMSE=1.6 g/l had a more accurate estimation of 

SSC than SRC with R2=0.25 and RMSE=6.4 gr/l. 

Nivesh and Kumar [17] used ANN and Multiple 

linear regression (MLR) models to estimate DSSL in 

the Vamsadhara catchment in India. The study 

period from 1997 to 2000 included rainfall and 

discharge data as inputs and sediment 

concentrations as output data for the models. 

Seventy percent of the data was used for training 

and 30% to validate the models. The results showed 

that the ANN model with R2=0.97 and RMSE=110.15 

gr/l had a high accuracy in DSSL estimation. 

Because of the quantitative and qualitative 

problems of the data in the direct measurement of 

DSSL, its estimation is done using various methods. 

In most studies, modeling methods have been used 

to estimate the DSSL. However, in these studies, 

the pre-processing of data has been neglected or 

given less attention. Also, the inappropriate 

division of data was done randomly in the training 

and validation groups for entering the models. 

Also, in most studies, the role of dynamic and 

effective daily precipitation data in the production 

of DSSL is ignored, and only daily flow discharge is 

used to estimate the amount of DSSL in the 

watersheds. Lack of attention to these cases will 

lead to an error in estimating DSSL and the inability 

to generalize it for the watersheds studied. Also, 

the use of the SRC method due to the regression 

nature of the model and the expansion of the 

mathematical relationship; the inadequate 

understanding of the relationship between DSSL 

and other variables in nature will lead to errors in 

the estimation of DSSL. Therefore, the objectives of 

this research include: 

1. Data clustering using a Self-organizing map 

(SOM) neural network to increase the power of 

model generalization. 

2. Using the WinGamma Method to reduce the 

dimensions of variables and the best variable 

composition for entering into the intelligent 

models. 

3. Use of daily precipitation and daily flow 

discharge variables with a delay of three days for 

more accurate DSSL estimation.  

4. Use intelligent models to estimate DSSL and 

compare them with the SRC model. 

ethodsmMaterial and  2. 

Study area and data  2.1. 

The areas studied in this research included the 

Kasilian watershed, with a humid climate in the 

north of Iran, and the Rood Zard watershed, with 

semi-arid climate in the southwest of Iran. The 

Kasilian watershed consists of vast mountainous 

and jungle areas located in Mazandaran Province. 

The watershed is located at 35° 58' to 36° 19' in 

north latitudes and 52° 53' to 53° 15' in the eastern 

longitude (Figure 1). The Rood Zard watershed is 

located at 31° 21' to 31° 41' in the north latitudes and 

49° 39' to 50°10' in the eastern longitude east of 

Khoozestan Province (Figure 2). Physiographic 

characteristics for the Kasilian and Rood Zard 

watersheds are shown in Table 1. This study used 

the Shirgah-Kasilian hydrometric station in the 

Kasilian watershed and the Mashin hydrometric 

station in the Rood Zard watershed. The data used 

in this research for the Kasilian watershed included 

491 information records for a 41-years (1971–2012) 

statistical period. The average daily precipitation 

for the Kasilian watershed was 1.78 (mm), the 

average daily flow discharge was 2.84 (m3/s), the 

minimum and maximum amount of instantaneous 

flow discharge was 0.05 and was 12.46 (m3/s), the 

minimum amount of DSSL was 0.42 and the 

maximum was 1190.45 (ton/day). The data used for 

the Rood Zard watershed included 458 information 

records for a 36-years (1977–2012) statistical 

period. The average daily precipitation for the Rood 

Zard watershed was 2.35 (mm), the average daily 

flow discharge was 10.21 (m3/s), the minimum and 

maximum amount of instantaneous flow discharge 

was 0.22 and 109.00 (m3/s), the minimum and 

maximum amount of DSSL was 0.38 and 57300.46 

(ton/day). The input data to the models included 

the instantaneous flow discharge (Q), average 

daily flow discharge (Qi), average daily flow 

discharge for one day ago (Qi-1), average daily flow 

discharge for two days ago (Qi-2), average daily 

flow discharge for three days ago (Qi-3), average 

daily precipitation (Pi), average daily precipitation 
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for one day ago (Pi-1), average daily precipitation 

for two days ago (Pi-2), and average daily 

precipitation for three day ago (Pi-3). The output 

data to the models was the daily suspended 

sediment load (DSSL). 

 

Table 1. Physiographic characteristics for Kasilian and Rood Zard watersheds. 

Physiographic characteristics Kasilian watershed Rood Zard watershed 

Minimum elevation above sea level (m) 300 400 

Maximum elevation above sea level (m) 3000 3300 

Surface area (km2) 336.7 861 

Perimeter (km) 114.2 173 

Total length of Stream watershed (km) 232.6 453.9 

Slop (%) 19.7 27.4 

length of Major River (km) 48 47.5 

Gravelius factor 1.7 1.7 

Form factor 6.8 2.6 

Stream condensation 0.7 0.5 

Time of Concentration, Kirpich (h) 4 3.8 

 Bifurcation ratio 2.7 1.6 

  

Fig. 1. Kasilian watershed map.                       

Fig. 2. Rood Zard watershed map. 

http://civil808.com/pedia/15727/%D8%B2%D9%85%D8%A7%D9%86-%D8%AA%D9%85%D8%B1%DA%A9%D8%B2-%D8%AF%D8%B1-%D8%AD%D9%88%D8%B6%D9%87-%D9%87%D8%A7%DB%8C-%D8%A2%D8%A8%D8%B1%DB%8C%D8%B2%D8%8C-time-concentration
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Preprocessing data 2.2. 

In this study, pre-processing was performed on the 

models before using the data in the models. The 

first step was data clustering; SOM was used for 

data clustering. This network is one of a variety of 

unstructured ANNs. The network consists of two 

layers: the input layer is the location of the input 

variables, and the output layer includes a network 

of neurons. In this network, the Euclidean distance 

(Equation 1), each of the data, is calculated from 

the center of the output layer neurons; the neuron 

with the least distance to the variable is selected as 

the winning neuron (the competition phase). In the 

next step, the winning neuron stimulates the 

neighboring neurons to adapt to their new input, 

which is called the Cooperative phase. Ultimately, 

the network performs the best matching with the 

data (Adaptation phase) [18]. The Euclidean 

distance is calculated from Equation 1: 

Dj = |x − wj| = ∑ [(xi − wij)
2]

1
2

N

i=1
 (1) 

where Dj is the distance between the output vector 

of the input vector, N is the number of vector 

variables, M is the number of output layer neurons, 

Wij is the weight of the output neuron, and the sign 

|x- wj| represents the distance [19]. MATLAB R2013a 

software was used to design this model. After the 

first stage of data preprocessing, the next stage is 

input variable selection. In order to reduce data 

dimensions, input data selection, and the best 

combination of input into models, the gamma test 

software package was used in the WinGammaTM 

software. In this method, all variables are entered 

into the software, and based on the Vratio, the 

gamma coefficient and standard error values for all 

possible combinations are calculated; the best 

combination of variables is obtained based on the 

lowest values of the statistics. This method is very 

effective for variables that have nonlinear 

relationships with each other [20,9]. Another stage 

of data preprocessing is the standardization of 

data in order to know the scaling data before the 

combination of variables is entered into the 

models, making it possible to compare the data 

with different measurement criteria. In this study, 

for data entry into the WinGammaTM software, the 

standardization of data between [0 1] and the use 

of activation functions log sigmoid or tangent 

sigmoid in artificial neural networks, data 

standardization was performed between [0.1 0.9] 

and [-0.9 0.9]. 

Z =
(Xi−Ximin)

(Ximax−Ximin)
     (2) 

Z = 0.1 + 0.8 ∗
(Xi − Ximin)

(Ximax − Ximin)
 (3) 

Z = (1.8 ∗
(Xi − Ximin)

(Ximax − Ximin)
) − 0.9 (4) 

where Z is a standardized variable, Xi is the initial 

variable, Ximin is the minimum value, and Ximax is 

the maximum value. 

2.3. ANNs mode 

One of the methods of intelligent data processing 

is the use of ANN, which is due to the analysis of 

information in a similar way to the human brain, 

generalization power, no need for a predetermined 

mathematical model, and the ability to learn and 

learn. It can be used to estimat,e latency 

parameters [21,22]. An artificial neural network is 

a subset of Calculation intelligence (CI) methods. 

CI means the extraction of algorithms, 

mathematical relations, and mappings in 

numerical data. CI systems, in principle, offer free 

model dynamic systems for approximating 

functions and mappings [23]. ANN is modeling the 

structure of neural computations and synaptic 

connections similar to the human brain. The Feed-

forward Multi-layer Perceptron Neural Networks 

model was used in this research. This model 

consists of three layers: input, intermediate (hide), 

and output. The input layer is a transmitter layer 

and a device for data acquisition. The final layer or 

output layers include the values predicted by the 

network and, therefore, represent the pattern 

output; the middle and hidden layers composed of 

processor nodes are the locations of the data 

processing. The number of hidden layers and the 

number of nodes in each hidden layer are typically 

identified by the validation and strain method [8]. 

The process of training in Feed-forward Multi-layer 

Perceptron Neural Networks follows the Delta rule 

or back propagation rule. In order to succeed in 

network training, the output should be gradually 

closer to the optimal output to reduce the amount 

of error function. For this purpose, the weight 

coefficients of the communication lines of the units 

are adjusted using the Delta general rule. Delta's 
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rule calculates the value of the error function and 

releases it from the back of a layer to the previous 

layer [24]. Delta law is defined by Equation 5: 

Wij
new = Wij

old − η
∂E

∂Wij
 (5) 

where Wij
old  and Wij

new  are respectively the weight 

between the neurons i and j before and after the 

specified repetition, η is the learning rate, and E is 

the error function. The Lewenberg Marquardt 

method was used for learning the neural network. 

The activation functions in the hidden layer 

neurons and the output layer were respectively 

considered log sigmoid or tangent sigmoid and 

linear. In this research, MATLAB R2013a software 

was used for ANN modeling, data clustering and 

calculating the data cluster validity index. 

2.4. GEP model 

The GEP model, a form of extended genetic 

programming, was presented by Ferreira [25]. This 

model is one of the methods of circular algorithm 

and one of a variety of intelligent models based on 

Darwin's theory of evolution. In this method, the 

algorithms attempt to define a goal function in the 

form of qualitative criteria and then apply the 

function to compare different problem-solving 

solutions in a step-by-step process of data 

structure, ultimately providing the appropriate 

answer. The fundamental difference between the 

genetic algorithm and GEP is the nature of each 

individual; individuals in the genetic algorithm 

linear rows are fixed-length (chromosomes), but in 

the GEP, they are separate branches [25]. GEP is 

also emphasized on the tree structure of the sets, 

but the genetic algorithm is based on the system of 

binary cultivars. The first step in the model 

algorithm is to generate the initial population of 

solutions, which can be done by random process or 

taking input information about the problem. Then, 

the chromosomes are expressed as tree expressions 

and evaluated by fit function. Evolution is stopped 

if the desired solution is reached or generations 

reach a certain number, and the best solution is 

presented [25]. If the conditions do not stop, 

elitism will be performed, and the remaining 

solutions will be assigned to the selective process. 

This process is repeated for several generations, 

and with the advance of generations, the quality of 

the population is also improved in relative terms 

[26]. In GEP, various operators, such as mutation 

and combination, are used. The goal of the 

mutation operator is to randomly regenerate 

within certain chromosomes. The function of this 

operator is that it performs some defective 

operations to prevent the creation of defective 

individuals in terms of rules. In this model, one-

point, two-point, and gene combinations are used. 

Since the two-point combination is able to turn the 

non-coded areas into chromosomes more 

efficiently, it is more favorable. Another operator 

used in GEP is transposition. In this method, various 

phenomena are modeled using a set of arithmetic 

functions, trigonometry or functions defined by 

users and terminals. The set of terminals consists 

of fixed values and independent variables of the 

problem [27,10]. In this research, GEPXpro Tools5.0 

software was used for GEP modeling. 

2.5. SRC model 

SRC is an exponential regression relation between 

instantaneous flow (Q) in terms of (m3/s) and its 

daily suspended sediment load (DSSL) in terms of 

(ton day-1). The coefficients a and b are the 

coefficients of SRC for the hydrometric station, 

which is calculated by the least squares error 

method [23]. 

DSSL = 𝑎𝑄𝑏 (6) 

2.6. Evaluation criteria 

In this research, for the evaluation and 

performance of the models, quantitative indices 

including Coefficient of Determination (R2), root 

mean square error (RMSE), mean absolute error 

(MAE), and Nash-Sutcliffe (NS) were used, which 

are shown in Equations 7 to 11, respectively. 

R2

= [
∑ (so − s0̅)(sM − sM̅̅̅̅ )n

i=1

√∑ (so − s0̅)2 ∑ (sM − sM̅̅̅̅ )2n
i=1

n
i=1

]

2

 
(7) 

RMSE = √
1

n
∑ (sM − sO)2n

i=1  (8) 

MAE =
∑ |(sO − sM)|n

i=1

n
 (9) 

NS = 1 −
∑ (sM − sO)2n

i=1

∑ (so − s0̅)2n
i=1

 (10) 
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where sO and sM respectively are the observed and 

predicted suspended sediment load, s0̅ is the 

average of the observed suspended sediment load, 

sM̅̅̅̅  is the average of predicted suspended sediment 

load, and n is the number of data. In this research, 

MATLAB R2013a software and SPSS22 software were 

used for statistical analysis.  

. Results and Discussion3 

. Statistical data 3.1 

The statistical characteristics of the data used in 

the ANN, GEP, and SRC models for the Kasilian and 

Rood Zard watersheds are presented in Tables 2 and 

3. 
  
 

Table 2. Statistical data for the Kasilian watershed. 

Data set Minimum Maximum Mean Coefficient of variation 

Q (m3/s) 0.05 12.46 2.84 0.84 

Qi (m3/s) 0.00 14.40 2.84 0.91 

Qi-1 (m3/s) 0.01 19.70 3.01 0.99 

Qi-2 (m3/s) 0.01 22.00 3.02 1.05 

Qi-3 (m3/s) 0.00 62.45 3.08 1.28 

Pi (mm) 0.00 38.94 1.78 2.08 

Pi-1 (mm) 0.00 60.26 2.23 2.37 

Pi-2 (mm) 0.00 39.75 2.31 2.05 

Pi-3 (mm) 0.00 47.98 2.45 2.07 

DSSL (ton/day) 0.42 1190.45 70.08 2.19 

Table 3. Statistical data for the Rood Zard watershed. 

Data set Minimum Maximum Mean Coefficient of variation 

Q (m3/s) 0.22 109.00 9.39 1.50 

Qi (m3/s) 0.20 174.00 10.21 1.89 

Qi-1 (m3/s) 0.20 370.00 11.73 2.55 

Qi-2 (m3/s) 0.15 533.00 9.98 2.84 

Qi-3 (m3/s) 0.15 443.00 9.74 2.60 

Pi (mm) 0.00 55.50 2.35 3.31 

Pi-1 (mm) 0.00 91.23 2.85 3.45 

Pi-2 (mm) 0.00 72.85 1.92 3.46 

Pi-3 (mm) 0.00 51.29 1.57 3.59 

DSSL (ton/day) 0.38 57300.46 1218.43 4.86 

Results of preprocessing of data 3.2. 

In this research, data clustering was performed in 

three groups of 70% training data (345 data for the 

Kasilian watershed and 320 for the Rood Zard 

watershed), 15% cross-validation data (73 data for 

the Kasilian watershed and 69 for the Rood Zard 

watershed), and 15% validation data (73 data for 

the Kasilian watershed and 69 for the Rood Zard 

watershed) using the SOM method. In this method, 

the optimal number of clusters was first obtained 

using Davis Bouldin index (DBI), and then the data 

were divided into three groups. Figures 3 and 4 

show the DBI charts for the Kasilian and Rood Zard 

watersheds, respectively. The optimal cluster 

number was obtained when the DBI was the least. 

According to Figures. 3 and 4, the number of 

optimal clusters of the Kasilian watershed was 46 

with DBI= 1.01 and the optimal number of clusters 

of the Rood Zard watershed was 27 with DBI=0.85. 

Figures 6 and 7 show the minimum, maximum, 

mean, and coefficient of variation (CV) charts in 

three groups of training data, cross-validation 

data, and validation data for the Kasilian and Rood 

Zard watersheds, respectively.  
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Fig. 3. DB index for the Kasilian watershed.        

 
Fig. 4. DB index for the Rood Zard watershed. 

 

  

 
 

Fig. 5. Statistical data charts for training, cross-validation, and validation data for the Kasilian watershed.
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Fig. 6. Statistical data charts for training, cross-validation, and validation data for the Rood Zard watershed. 

These charts show that the distribution of data in 

all three groups was uniform. That is, the data in 

each training, cross-validation, and validation 

group could be representative of the total data 

during the statistical period. In fact, the use of the 

SOM method for clustering and dividing data 

makes the data even more homogeneous. This will 

increase the power of generalization and 

performance of the models, and the accuracy of 

DSSL estimates increased; the results of this study 

corresponded with the research by Chaudhary et 

al. [19] regarding the role of the SOM method in 

improving the results of the models. The results of 

this study were consistent with the results of 

Tabatabaei and Salehpour Jam [28]. These 

researchers calibrated the SRC model using an 

evolutionary algorithm for DSSL estimation in the 

Shalman Rood watershed in the north of Iran. They 

clustered the data using the SOM neural network to 

increase the power of generalization and accuracy 

of the model. The results showed the effect of this 

method on reducing the amount of RMSE from 5754 

to 1681 (ton day-1). The best combination of input 

variables to the intelligent models in the Kasilian 

watershed was the gamma test and genetic 

algorithm methods in WinGammaTM software. 

These variables included Qi-1,Qi-2,Qi-3,Pi,Pi-1,Pi-2,Pi-

3,with the least amount of gamma statistic equal 

to 0.0015, the standard error equal to 0.0008, and 

Vratio equal to 0.0227; the best combination of input 

variables for the Rood Zard watershed included the 

Qi,Qi-1,Qi-2,Pi,Pi-1,Pi-2,Pi-3 variables, with the least 

amount of gamma statistic equal to 9.2×10-5,  the 

standard error equal to zero, and Vratio equal to 

0.0126. Therefore, it was observed that the gamma 

test and genetic algorithm methods were able to 

save time and cost in developing the best model. 

This method is a suitable and impartial technique 

to assess the potential of each input to the models, 

providing the best combination of input variables 

to the ANN and GEP models. Other researchers 

have also used this technique [29,9]. 
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. Results of modeling3.3 

In this research, the best combination of input 

variables obtained from the gamma test and 

genetic algorithm was used to enter GEP and ANN 

models in the Kasilian and Rood Zard watersheds. 

The values of the parameters used in the GEP model 

are shown in Table 4. The chromosomes in the GEP 

model consisted of more than one gene of the same 

length. The number of genes was optional. In this 

research, the number of genes for an optimal 

response in the GEP model was three, and the 

number of chromosomes was 30. Also, this model 

was evaluated with the RMSE error function 

criterion. The mathematical operators used in this 

model included (+, - , /, × , Exp, Ln, Inv, x2 and 3RT). 

The results of the ANN with two activation 

functions, namely the log sigmoid and tangent 

sigmoid, and the GEP and SRC models for the 

Kasilian and Rood Zard watersheds are presented 

in Tables 5 and 6, respectively. 

 

Table 4. The values of the parameters used for GEP modeling. 

parameter Value Parameter Value 

Number of chromosomes  30 One-point recombination rate   0.3 

Number of Genes  3 Two-point recombination rate 0.3 

Linking function + Gene recombination rate 0.1 

Mutation rate 0.044 Number of head 10-18 

Inversion rate    0.1 Gene transposition rate    0.1 

Table 5. The results of the models for the Kasilian watershed.

Number of model Model combinationInput variables  MAE 
RMSE  

)1-(ton day 
NSE 2R 

1 ANN-Log sigmoid 

Qi-1,Qi-2,Qi-3,Pi,Pi-1,Pi-2,Pi-3 

250.6 591.4 0.96 0.97 

2 ANN-tangent sigmoid 231.4 578.6 0.98 0.98 

3 GEP 252.1 611.2 0.96 0.96 

4 SRC Q 964.7 2420.9 0.08 0.34 

Table 6. The results of the models for the Rood Zard watershed.

Number of models Model Input variables combination MAE 
RMSE  

)1-(ton day 
NSE 2R 

1 ANN-Log sigmoid 

Qi,Qi-1,Qi-2,Pi,Pi-1,Pi-2,Pi-3 

564.8 1771.9 0.98 0.98 

2 ANN-tangent sigmoid 781.9 2276.1 0.94 0.95 

3 GEP 475.7 1671.9 0.99 0.99 

4 SRC Q 3520.6 9982.4 -0.11 0.01 

Figures 6 and 7 respectively show the scatter plot of 

the results of the predicted DSSL by ANN with the 

activation function of log sigmoid and tangent 

sigmoid and the GEP and SRC models versus the 

observed values for test data set for the Kasilian 

and Rood Zard watersheds. According to Table 5 

and Figure 6, between the intelligent models (ANN 

and GEP) with best combination of input variables 

(Qi-1,Qi-2,Qi-3,Pi,Pi-1,Pi-2,Pi-3) and also the traditional 

SRC model with input variable Q, the ANN model 

with the activation function of tangent sigmoid 

with the statistical values MAE=231.4 (ton day-1), 

RMSE=578.6 (ton day-1), NSE =0.98 and R2=0.98 was 

able to estimate DSSL with high accuracy  in the 

Kasilian watershed. Regarding the regression 

equation of this model (y=0.9677x+5.8462), the line 

slope was close to one, which indicated the high 

power of this model in estimating the DSSL value. 

In this formula, by setting the observed DSSL value 

instead of X, the predicted DSSL could be obtained 

with high precision. Also, the proper distribution of 

data around the regression line in this figure 

indicates the proper data clustering so that it 

covers all the DSSL values from low to high. These 

results were consistent with the results of Kumar et 

al. [30] and the Samantaray and Ghose [31] 

research. Kumar et al. [30] used ANN and 

regression models to estimate DSSL in the Kopili 

watershed in India. Their results showed that the 

ANN model compared with the regression model, 

with NSE=0.89 and R2=0.92, estimated the DSSL 

value with high accuracy. Samantaray and Ghose 
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[31] estimated the value of DSSL using artificial 

neural network models in the rivers of Salebhata, 

India. Their results showed that the Feed-forward 

Multi-layer Perceptron (FFMLP) of the ANN model 

had an accurate estimate of DSSL with 

RMSE=0.00873 and R2=0.93. Also, the best model 

for estimating DSSL in the Rood Zard watershed 

was the GEP model, with the input variables Qi,Qi-

1,Qi-2,Pi,Pi-1,Pi-2,Pi-3. The statistical values of this 

model were MAE=475.7 (ton day-1), RMSE=1671.9 

(ton day-1), NSE=0.99, and R2=0.99 (Table 6 and 

Figure 7). Azamathulla et al.  [32], Sheikhalipour 

and Hassanpour [14], and Emamgholizadeh and 

Karimi Demneh [33] obtained results similar to 

those of the current research. Azamathulla et al.  

[32] used Adaptive neuro fuzzy inference system 

(ANFIS), GEP, and regression methods to estimate 

DSSL in the Muda, Langat, and Kurau rivers in 

Malaysia. The results showed that the ANFIS and 

GEP models performed DSSL estimation with high 

accuracy compared to the regression model. 

Sheikhalipour and Hassanpour [14] estimated the 

suspended sediment load in the Sistan River using 

the GEP model. Results for test data with 

RMSE=2305.45 (ton day-1), MBE=1400.12 (ton day-1), 

and R2=0.88 showed that DSSL was estimated using 

this method with high accuracy. Emamgholizadeh 

and Karimi Demneh [33] compared three 

intelligence models (GEP, ANN, and ANFIS models) 

with the SRC method to estimate the daily 

suspended sediment load in the Kasilian and Talar 

Rivers. The results showed that the GEP model with 

a high coefficient of determination (R2) and a low 

mean absolute error (MAE) was better than both 

the ANN and ANFIS models for estimating the daily 

suspended sediment load of the two sub-basins.  

The results of the models in the Kasilian and Rood 

Zard watersheds showed that the intelligent 

models had higher power than the traditional SRC 

model in DSSL estimation. The SRC model in the 

Kasilian watershed with R2=0.34 and NSE=0.08 and 

the Rood Zard watershed with R2=0.01 and NSE=-

0.11 showed the inability of this model to estimate 

DSSL. Since the SRC method is based on regression 

methods and definitive variables, and because in 

nature the relationship between variables is vague 

and nonlinear, the SRC model was not able to 

estimate the correct DSSL. Figures 8 and 9 show the 

results of the best model derived from the DSSL 

estimate versus the observation values for the 

Kasilian and Rood Zard watersheds, respectively. 

These graphs showed that the observed and 

predicted data were well-matched. Therefore, it 

was concluded that intelligent models such as 

artificial neural networks and GEP were able to 

estimate DSSL value in watersheds with high 

accuracy and efficiency. 

 

  
Fig. 6. Scatter plot of predicted versus observed DSSL by models for the Kasilian watershed.  
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Fig. 6. (Continued) Scatter plot of predicted versus observed DSSL by models for the Kasilian watershed.  

  

  

Fig. 7. Scatter plot of predicted versus observed DSSL by models for the Rood Zard watershed. 
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Fig. 8. Graph of the results of the best model for the predicted DSSL versus observational values for the Kasilian 

watershed. 

Fig. 9. Graph of the results of the best model for the predicted DSSL versus observational values for the Rood Zard 

watershed. 

4. Conclusions 

In this research, the ANN and GEP intelligent 

models and the traditional SRC model were used to 

estimate the suspended sediment load in the 

Kasilian watershed, with a humid climate in the 

north of Iran, and the Rood Zard watershed, with a 

semi-arid climate in the southwest of Iran. The 

SOM method was used for data clustering, and the 

data was divided into three groups: 70% training 

data, 15% cross-validation data, and 15% 

validation data. Contrary to the random methods 

in the data divide, the data in each group in the 

SOM method are representative of the total data 

during the studied statistical period; this will 

increase the modeling power in the correct DSSL 

estimation. Also, the gamma test and genetic 

algorithm were used to reduce the dimensions of 

input data into models to increase the speed of the 

algorithms and obtain the best combination of 

input variables in the watersheds to save time and 

cost. Modeling using this method reduced the 

likelihood of over fitting and, therefore, the 

generalization power for learning algorithms 

increased. The results showed that in the Kasilian 

watershed, the ANN model with the activation 

function of the tangent sigmoid and input variables 

Qi-1,Qi-2,Qi-3,Pi,Pi-1,Pi-2,Pi-3 and in the Rood Zard 

watershed, the GEP model with input variables 

Qi,Qi-1,Qi-2,Pi,Pi-1,Pi-2,Pi-3, were the best models in 

estimating DSSL. The results of the models in the 

watersheds showed the superiority of intelligent 

models compared to the SRC model in DSSL 
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estimation. In intelligent models, the relationships 

between input and output variables, regardless of 

the explicit physical laws between them, were 

detected. As a result, intelligent models increased 

the ability to estimate the DSSL of the watersheds 

in conditions where there is always uncertainty in 

understanding the problem and the responses 

between the watershed resources with the dynamic 

variables. Therefore, considering the accuracy of    

smart methods in data estimation, it is suggested 

to use SOM models, gamma tests, genetic 

algorithms, ANN and GEP models in other studies 

such as watershed erosion and soil aggregate 

stability estimation. 

References 

[1] Emamgholizadeh, S., Bateni, S. M., Nielson, J. 

R. (2018). Evaluation of different strategies for 

management of reservoir sedimentation in 

semi-arid regions: a case study (Dez 

Reservoir). Lake and reservoir management, 

34(3), 270-282. 

https://doi.org/10.1080/10402381.2018.143662

4 

[2] Chamoun, S., De Cesare, G., Schleiss, A. J. 

(2017). Venting of turbidity currents 

approaching a rectangular opening on a 

horizontal bed. Journal of hydraulic research, 1–

15. 

 https://doi.org/10.1080/00221686.2017.128926

6 

[3] Tayfur, G. (2014). Soft computing in water 

resources engineering: Artificial neural 

networks, fuzzy logic and genetic algorithms. 

WIT Press. 

[4] Harrington, S. T., Harrington, J. R. (2013). An 

assessment of the suspended sediment rating 

curve approach for load estimation on the 

Rivers Bandon and Owenabue, Ireland. 

Geomorphology, 185, 27–38. 

 https://doi.org/10.1016/j.geomorph.2012.12.00

2 

[5] Shiau, J. T., Chen, T. J. (2015). Quintile 

regression-based probabilistic estimation 

scheme for daily and annual suspended 

sediment loads. Water resources management, 

29(8), 2805–2818.   
 https://doi.org/10.1007/s11269-015-0971-5 

[6] Heng, S., Suetsugi, T. (2014). Comparison of 

regionalization approaches in parameterizing 

sediment rating curve in ungauged 

catchments for subsequent instantaneous 

sediment yield prediction. Journal of 

hydrology,  512, 240–253. 

 https://doi.org/10.1016/j.jhydrol.2014.03.003  

[7] Li, X., Nour, M. H., Smith, D. W., Prepasc, A. A. 

(2010). Neural networks modeling of nitrogen 

export: model development and application to 

unmonitored boreal forest watersheds. 

Environmental technology, 31(5), 495–510.  

 https://doi.org/10.1080/09593330903527880 

[8] Chen, X. Y., Chau, K. W. (2016). A hybrid double 

feed forward Neural Network for suspended 

sediment load estimation. Water resources 

management, 30, 2179–2194.  

 https://doi.org/10.1007/s11269-016-1281-2. 

[9] Shamim, M. A., Hassan, M., Ahmad, S., 

Zeeshan, M. (2016). A comparison of Artificial 

Neural Networks (ANN) and Local Linear 

Regression (LLR) techniques for predicting 

monthly reservoir levels. KSCE journal of civil 

engineering, 20(2), 971–977.  

 https://doi.org/10.1007/s12205-015-0298-z 

[10] Thompsona, J., Sattar, A., Gharabaghi, B.,  

Warner, R. (2016). Event-based total 

suspended sediment particle size distribution 

model. Journal of hydrology, 536, 236-246. 

 https://doi.org/10.1016/j.jhydrol.2016.02.056 

[11] Rajaee, T., Mirbagheri, S. A., Zounemat-

Kermani, M., Nourani, V. (2009). Daily 

suspended sediment concentration simulation 

using ANN and neuro-fuzzy models. Science of 

the total environment, 407(17), 4916-4927. 

https://doi.org/10.1016/j.scitotenv.2009.05.01

6 

[12] Kisi, O., Aytac, G. (2010). A machine code-

based genetic programming for suspended 

sediment concentration estimation. Advances 

in engineering software, 41(8), 939-945. 

 https://doi.org/10.1016/j.advengsoft.2010.06.

001 

[13] Boukhrissa, Z. A., Khanchoul, K., Bissonnais, Y. 

L., Tourki, M. (2013). Prediction of sediment 

load by sediment rating curve and neural 

networ.k (ANN) in El Kebir catchment, Algeria. 

Journal of earth system science, 122(5), 1303–

1312. 

https://doi.org/10.1080/10402381.2018.1436624
https://doi.org/10.1080/10402381.2018.1436624
https://www.tandfonline.com/toc/tjhr20/current
https://doi.org/10.1080/00221686.2017.1289266
https://doi.org/10.1080/00221686.2017.1289266
https://doi.org/10.1016/j.geomorph.2012.12.002
https://doi.org/10.1016/j.geomorph.2012.12.002
https://www.springer.com/earth+sciences+and+geography/hydrogeology/journal/11269
http://dx.doi.org/10.1007/s11269-015-0971-5
https://www.journals.elsevier.com/journal-of-hydrology
https://www.journals.elsevier.com/journal-of-hydrology
https://doi.org/10.1016/j.jhydrol.2014.03.003
https://doi.org/10.1080/09593330903527880
http://link.springer.com/journal/11269
http://link.springer.com/journal/11269
https://link.springer.com/article/10.1007/s11269-016-1281-2
https://link.springer.com/journal/12205
https://link.springer.com/journal/12205
http://dx.doi.org/10.1007/s12205-015-0298-z
https://www.sciencedirect.com/science/article/pii/S0022169416301019#!
https://www.sciencedirect.com/science/article/pii/S0022169416301019#!
https://www.sciencedirect.com/science/article/pii/S0022169416301019#!
https://www.sciencedirect.com/science/article/pii/S0022169416301019#!
https://www.sciencedirect.com/science/journal/00221694
https://www.sciencedirect.com/science/journal/00221694/536/supp/C
https://doi.org/10.1016/j.jhydrol.2016.02.056
https://doi.org/10.1016/j.scitotenv.2009.05.016
https://doi.org/10.1016/j.scitotenv.2009.05.016
https://doi.org/10.1016/j.advengsoft.2010.06.001
https://doi.org/10.1016/j.advengsoft.2010.06.001


 A. Alijanpour Shalmani et al. / Advances in Environmental Technology 10(2) 2024, 102-117.  116    

 https://doi.org/10.1007/s12040-013-0347-2 

[14] Sheikhalipour, Z., Hassanpour, F. (2013). 

Estimation of suspended sediment load using 

genetic expression programming. Journal of 

civil engineering and urbanism, 3(2), 292-299.  

[15] Abbaspour, B., Haghiabi, A. H. (2015). 

Comparing the estimation of suspended load 

using two methods of sediments rating curve 

and artificial neural network (A Case Study: 

Cham Anjir Station, Lorestan Province). 

Journal of environmental treatment 

techniques, 3(4), 215-222. 

[16] Joshi, R., Kumar, K., Adhikari, P. S. (2016). 

Modelling suspended sediment concentration 

using artificial neural networks for Gangotri 

glacier. Hydrology process, 30(2), 1354–1366. 

[17] Nivesh, Sh., Kumar, P. (2017). Modelling River 

suspended sediment load using artificial neural 

network and multiple linear regression: 

Vamsadhara River Basin, India. International 

journal of chemical studies, 5(5), 337-344. 

 https://doi.org/10.1002/hyp.10723 

[18] Chen, I. T., Chang, L. C., Chang, F. J. (2017). 

Exploring the spatio-temporal interrelation 

between groundwater and surface water by 

using the Self-Organizing Maps. Journal of 

hydrology, 556, 131-142. 

 https://doi.org/10.1016/j.jhydrol.2017.10.015 

[19] Chaudhary, V., Bhatia, R. S., Ahlawat, A. 

(2014). The self-organizing map learning 

algorithm with inactive and relative winning 

frequency of active neurons. Journal HKIE 

transactions, 21(1), 62–67. 

 http://dx.doi.org/10.1080/1023697X.2014.8836

80 

[20] Kakaei Lafdani, E., Moghaddam Nia, A., 

Ahmadi, A. (2013). Daily suspended sediment 

load prediction using artificial neural networks 

and support vector machines. Journal of 

hydrology, 478(4), 25-50.  

 https://doi.org/10.1016/j.jhydrol.2012.11.048 

[21] Emamgholizadeh, S. (2012). Neural network 

modeling of scour cone geometry around 

outlet in the pressure flushing. Global NEST 

journal. 14(4), 540-549. 

 https://doi.org/10.30955/gnj.000765 

[22] Emamgholizadeh S, Bateni, M. F.M. Jeng D. S. 

(2013). Artificial intelligence-based estimation 

of flushing half-cone geometry. Engineering 

applications of artificial intelligence, 26(10), 

2551-2558. 

https://doi.org/10.1016/j.engappai.2013.05.01

4 

[23] Tfwala, S. S., Wang, Y. M. (2016). Estimating 

sediment discharge using Sediment Rating 

Curves and Artificial Neural Networks in the 

Shiwen River, Taiwan. Water, 8(53), 1-15. 

https://doi.org/10.3390/w8020053 

[24] Zounemat-Kermani, M., Kişi, O., Adamowski, 

J., Ramezani-Charmahineh, A. (2016). 

Evaluation of data driven models for river 

suspended sediment concentration modeling. 

Journal of hydrology, 16(2), 1-40.  

https://doi.org/10.1016/j.jhydrol.2016.02.012 

[25] Ferreira, C. (2006). Gene expression 

programming: mathematical modeling by an 

artificial intelligence (Vol. 21). Springer. 

[26] Shiri, J., Kisi, O. (2011). Comparison of genetic 

programming with neuro-fuzzy systems for 

predicting short-term water table depth 

fluctuations. Computers and geosciences, 

37(10), 1692-1701.  

 https://doi.org/10.1016/j.cageo.2010.11.010 

[27] Emamgholizadeh, S. M., Bateni, S.M., 

Shahsavani, D., Ashrafi, T. Ghorbani, H. (2015). 

Estimation of soil cation exchange capacity 

using Genetic Expression Programming (GEP) 

and Multivariate Adaptive Regression Splines 

(MARS). Journal of hydrology, 529, 1590–1600. 

 https://doi.org/10.1016/j.jhydrol.2015.08.025 

[28] Tabatabaei, M., Salehpour Jam, A. (2017). 

Optimization of sediment rating curve 

coefficients using evolutionary algorithms and 

unsupervised artificial neural network. Caspian 

journal of environmental sciences, 15(4), 387-

401.   

 https://doi.org/10.22124/CJES.2017.2665 

[29] Rashidi, S., Vafakhah, M., Kakaei Lafdani, E., 

Javadi, M. R. (2016). Evaluating the support 

vector machine for suspended sediment load 

forecasting based on gamma test. Arabian 

journal of geosciences, 9, 1-15. 

 http://dx.doi.org/10.1007/s12517-016-2601-9 

[30] Kumar, D., Pandey, A., Sharma, N., Flugel, W. 

A. (2016). Daily suspended sediment 

simulation using machine learning approach. 

CATENA, 138, 77–90.  

 https://doi.org/10.1016/j.catena.2015.11.013 

https://ui.adsabs.harvard.edu/link_gateway/2013JESS..122.1303B/doi:10.1007/s12040-013-0347-2
https://doi.org/10.1002/hyp.10723
https://www.sciencedirect.com/science/journal/00221694/556/supp/C
https://doi.org/10.1016/j.jhydrol.2017.10.015
https://www.tandfonline.com/toc/thie20/current
https://www.tandfonline.com/toc/thie20/current
https://doi.org/10.1016/j.jhydrol.2012.11.048
https://doi.org/10.30955/gnj.000765
https://doi.org/10.1016/j.engappai.2013.05.014
https://doi.org/10.1016/j.engappai.2013.05.014
http://dx.doi.org/10.3390/w8020053
https://doi.org/10.1016/j.jhydrol.2016.02.012
https://doi.org/10.1016/j.cageo.2010.11.010
https://doi.org/10.1016/j.jhydrol.2015.08.025
http://cjes.guilan.ac.ir/
http://cjes.guilan.ac.ir/
https://doi.org/10.22124/cjes.2017.2665
https://link.springer.com/journal/12517
https://link.springer.com/journal/12517
http://dx.doi.org/10.1007/s12517-016-2601-9
https://doi.org/10.1016/j.catena.2015.11.013


                       A. Alijanpour Shalmani et al. / Advances in Environmental Technology 10(2) 2024, 102-117. 

 
 

117  

[31] Samantaray, S., Ghose, D. K. (2018). 

Evaluation of suspended sediment 

concentration using descent neural networks. 

Procedia computer science, 132, 1824–1831. 

 https://doi.org/10.1016/j.procs.2018.05.138 

[32] Azamathulla, H. M., Cuan, Y. C., Ghani, A. b., 

Chang, C. K. (2013). Suspended sediment load 

prediction of river systems:GEP approach. 

Arabian journal of geosciences, 6, 3469–3480. 

 https://doi.org/10.1007/s12517-012-0608-4  

[33] Emamgholizadeh, S. Karimi Demneh, R.  

(2019). A comparison of artificial intelligence 

models for the estimation of daily suspended 

sediment load: a case study on the Telar and 

Kasilian rivers in Iran. Water supply, 19(1), 165-

178. 

 https://doi.org/10.2166/ws.2018.062 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to site this paper: 

 

Alijanpour Shalmani, A., vaezi, A., & Tabatabaei, M. R. (2024). Estimating daily 

suspended sediment by intelligent and traditional models (Case Study: Kasalian 

and Rood Zard watersheds, Iran). Advances in Environmental Technology,10(2), 

102-117, doi: 10.22104/aet.2024.4846.1309 

 

 

 

https://doi.org/10.1016/j.procs.2018.05.138
https://link.springer.com/journal/12517
http://dx.doi.org/10.1007/s12517-012-0608-4
https://doi.org/10.2166/ws.2018.062

