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 Wastewater management in petrochemical industries plays an effective role in 

reducing their environmental consequences. This study utilized life cycle 

assessment and carbon footprint methodologies to assess these environmental 

impacts. The objectives of the investigation were pursued using the ReciPe 

2016, Cumulative Energy Demand, Cumulative Exergy Demand approaches, 

and sensitivity analysis. The outcomes of the endpoint analysis revealed that 

damage to resources, human health, and ecosystems received more than 98% 

of the total impact due to electricity consumption. Furthermore, electricity 

consumption and COD were responsible for the most significant midpoint-level 

consequences. The sensitivity analysis showed that a change of approximately 

20% in electricity and chemical oxygen demand had the most significant 

impact on the ozone depletion category. The primary gas emitted as a result 

of the wastewater treatment process was carbon dioxide, which accounted for 

99.78% of the carbon footprint associated with the process. Based on these 

findings, it can be inferred that replacing the current energy source 

with renewable alternatives would reduce over 90% of the environmental 

impacts of the wastewater treatment process in these industrial units.  
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1. Introduction 

Mitigating the environmental consequences 

stemming from industrial operations has 

consistently proven to be a crucial driver of 

sustainable development. Therefore, it is 

imperative for industrial entities to amend their 

wastewater before entering the ecosystem to 

curtail detrimental impacts and safeguard the 

environment. Biological treatment methods have 

received more attention than other methods due to 

their ease of use, high efficiency, and compatibility 

with the environment for wastewater treatment 

(WWT) in different practical conditions. However, 

despite the numerous positive effects of 

wastewater treatment, they have a direct and 
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indirect role in environmental pollution due to their 

processes. Significant energy consumption, which 

influences greenhouse gas emissions and global 

warming, is one of these effects [1]. In addition, 

sludge waste and biosolids resulting from these 

methods may also contain large amounts of 

pathogens and heavy metals, which lead to 

harmful effects on human health [2]. Therefore, 

increasing system efficiency and reducing 

environmental effects, energy flow, and especially 

greenhouse gas emissions should be considered in 

the design and use of these biological treatment 

methods [3]. The basis of an activated sludge 

system is the conversion of organic matter into 

carbon dioxide, water, and bacterial cells, which 

play a major role in the emission of carbon dioxide, 

methane, and other greenhouse gases. Hence, the 

most important environmental challenges 

associated with activated sludge systems are 

affected by excess sludge disposal and greenhouse 

gas emissions. Therefore, the comprehensive 

environmental assessment of these systems is 

considered a major step in identifying and 

providing preventive solutions against the 

occurrence of these harmful environmental effects 

[4]. Today, life cycle assessment (LCA) is known as 

the most comprehensive method of evaluating the 

environmental consequences of a process [5]. LCA 

quantifies the environmental effects of a project by 

analyzing and interpreting all input and output 

data related to the system's raw materials, 

transportation, storage, emission to the 

atmosphere, and waste in water in an integrated 

manner. Choosing a comprehensive method 

related to the desired goal is considered to be one 

of the other effective criteria for the successful 

completion of an LCA project. It covers the total 

environmental effects related to the project and 

presents effective solutions to reduce the possible 

environmental burdens [6]. Among the various 

existing methods, the ReCiPe Midpoint (H) method 

is considered one of the most popular and practical 

methods for describing the role of effective 

parameters and analyzing the obtained results [1]. 

The ReCiPe method describes the collection of 

environmental burdens in two categories 

comprising midpoint and endpoint levels. It 

facilitates the interpretation of the results for the 

user, making it easier to draw conclusions and 

provide management solutions in this field. Along 

with the evaluation of the environmental effects, 

the energy flow in the system and its energy 

efficiency are also considered as other influential 

parameters in the successful economic and 

environmental evaluation of a wastewater 

treatment system. Optimizing energy consumption 

in treatment systems reduces the harmful effects 

on the environment and is very important from an 

economic aspect. It can be considered as a major 

incentive for investing in this field, due to the more 

favorable profitability of a wastewater treatment 

project [7]. In addition, reducing greenhouse gas 

emissions is one of the most important aspects 

emphasized by designers and environmentalists in 

the design of a wastewater treatment system [8]. 

Therefore, the objectives of this study are as 

follows: 1) to comprehensively evaluate the 

environmental effects of the wastewater 

treatment system on petrochemical industries, 2) 

to investigate the energy flow and estimate the 

useful energy of the system, 3) to accurately 

evaluate greenhouse gas emissions and estimate 

the carbon footprint of the wastewater treatment 

system, 4) to apportion the effects of the 

wastewater treatment system on human health, 

ecosystems, and resources, and 5) to provide 

management solutions to reduce adverse 

environmental effects and achieve sustainable 

development. 

2. Materials and methods 

2.1. Activated sludge system 

This study assessed the LCA, energy and exergy 

analyses, and carbon footprint of an activated 

sludge system used by a petrochemical company to 

treat its wastewater. The plant is located in the 

coastal region of the Persian Gulf, south of Iran, 

and its system daily treats 2,400 m3 of industrial 

wastewater. The main components of the 

wastewater treatment system are depicted in 

Figure 1. After the primary and secondary 

treatment steps, the treated wastewater is 

discharged to the receiving environment, and only 

a part of the settled sludge is returned to the 

biological system into the clarifier. The excess 

sludge is removed from the system  
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Fig. 1. System boundary of the wastewater treatment 

system (WWTS) in the present study. (The functional 

unit is 1 m3 of wastewater treatment). 

2.2. Applied software and database 

The LCA analysis and assessment of environmental 

burdens that emerged from the wastewater 

treatment system (WWTS) were conducted using 

SimaPro software (v. 9.3) and the Ecoinvent 

database (v.3.4) [9]. 

2.2.1. Goal and scope 

The functional unit in this study was the treatment 

of 1 m3 of petrochemical industry wastewater on a 

“gate-to-gate” scale. The system boundary for the 

WWTS is depicted in Figure 1. 

2.2.2. The WWTS Inventory 

The inventory for the activated sludge system was 

derived from mean annual field data and is 

presented in Table 1. Aggregating these data 

followed ISO 14040 and 14044 standards [9-11]. 

 

Table 1. The inventory of activated sludge WWTS (1 m3). 

Values Units Variables 

  Inputs 

13.37 g/d COD 

1.33 g/d BOD 

0.05 g/d TP 

0.875 g/d NH4
+ − N 

3.255 kWh Electricity 

  Emission to water 

0.725 g/d COD 

0.3 g/d TSS 

0.025 g/d NH4
+ − N 

0.025 g/d TP 

0.775 g/d NO3
− 

0.075 g/d Organic nitrogen 

2.2.3. Environmental impact assessment 

The environmental impact assessment was carried 

out using the ReCiPe 2016 method. The energy flow 

and exergy of the system were estimated by 

the Cumulative Energy Demand (CED) 

and Cumulative Exergy Demand (CExD) methods, 

respectively. Greenhouse gas emissions (carbon 

footprint) were evaluated using the Greenhouse 

Gas Protocol (GGP) method [8,9]. 

2.2.4. Sensitivity analysis 

Electricity and COD were the most influential 

parameters in this study. The effects of the change 

on other parameters were identified by applying a 

+20% change in the values of these two parameters 

[12]. 

3. Results and discussion 

The total environmental burdens at the midpoint 

and endpoint, the sensitivity analysis results, the 

system’s energy and exergy, and the global 

warming potential of the WWTS are presented in 

the following text. 

3.1. The midpoint impacts 

The midpoint impacts derived from the 

petrochemical industry WWTP are depicted in Fig. 

2. Regarding this matter, electricity (>88%) and 

COD (<10%) showed the most important role in 

emerging the environmental burdens. The role of 

the three remaining factors comprising NH4
+
-N, 

BOD, and TP was negligible (<1%). The maximum 

effect of electricity appeared in the OD category 

(99.47%). Also, although the effect of COD 

compared to electricity on all categories was 

estimated to be much less and <11% in total, unlike 

electricity, the greatest effect of COD was observed 

on the water consumption (WC) category 

(10.14%). Given this, the appraisal of the midpoint 

impacts demonstrated the significant role of 

electricity consumption with an 88% contribution. 

In this regard, Abyar et al. [13] assessed the LCA of 

an anaerobic/anoxic/oxic (A2O) system and 

reported a 93% contribution of electricity in CO2 

emission and global warming due to the utilization 

of natural gas and fossil fuels in electricity 

production. Moreover, Morelli et al. [14] pointed out 

a share of 38% and 26% of electricity in the global 

warming category in legacy and upgraded WWTPs, 

respectively. The released CH4 from the anaerobic 

digestion of sludge and N2O from the nitrification 

and denitrification processes could be the other 

effective parameters [15]. Meanwhile, the 
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ecotoxicity impacts mainly originate from 

biological and physicochemical reactions that 

ultimately lead to the release of heavy metals. 

Kamble et al. [16] announced the freshwater 

ecotoxicity (FET) value of 0.001 kg 1,4-DB eq, which 

resulted from the release of Ni, Cu, and Zn from the 

MBR system due to the high electricity 

consumption.But a higher value of FET in the 

present study (0.019 1,4-DB eq) could be attributed 

to a different source of electricity production or 

higher energy consumption. Nowrouzi and Abyar 

[17] also referred to the dominant role of natural 

gas (32-69%) and electricity (26.91%) in 

freshwater and marine ecotoxicity (MET). 

Generally, energy production is considered a key 

parameter in the emergence of environmental 

impacts due to the multiplicity of complex 

processes involved. On the other hand, the share of 

83% of electricity in the MET category was also 

reported by Ibn-Mohammed et al. [18]. The emitted 

heavy metals during electricity production, such as 

Cu and Zn, indicated the largest contribution in the 

MET and FET categories [19]. The eutrophication 

potential of the activated sludge system in the 

present study was equivalent to 20.6 × 10-5 (kg P eq) 

and 1.1 × 10-4 (kg N eq) in marine and freshwater 

ecosystems, respectively, which was lower than the 

reported values for activated sludge process and 

UASB system in a previous investigation [20]. The 

low value of eutrophication potential depicts a 

substantial capability of the activated sludge 

bioreactor for nutrient removal. It is notable that 

some processes, such as dewatering and waste 

sludge, reuse can reduce the overall environmental 

burdens [21]. In addition, the development and 

control of the aeration function in the bioreactor 

can decrease the eutrophication process [22]. Bai 

et al. [23] presented the effect of COD in the 

effluent on the eutrophication process, which was 

in agreement with the obtained results in this 

study. Furthermore, the adverse impact of 

photochemical oxidation on the ozone depletion 

(OD) category can be associated with the 

complexity and various operational stages of the 

wastewater treatment system, which induces the 

release of CH4 and sulfur dioxide [24]. It should be 

noted that hydropower dedicates the most 

contribution to electricity generation in Iran, which 

not only has resulted in adverse effects on the land 

use (LD) category but also enhances the 

evaporation of available water resources and 

affects the WC category [8]. Moreover, the 

combustion of fossil fuels for electricity generation 

leads to the release of suspended particles in the 

atmosphere, which can lead to respiratory diseases 

and incurable cancers when inhaled [9].  
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Fig. 2. The environmental impacts at the midpoint level. 

3.2. The endpoint impacts 

Figure 3a shows the environmental effects of WWT 

in three categories: damage to resources, human 

health, and ecosystems. As it is clearly evident in 

the figure, in accordance with the results shown in 

Figure 2, most of the damages are related to 

electricity consumption (<98%) and then COD 

(<1.2%). The analysis per process also confirmed 

the highlighted role of electricity consumption and 

COD, while the roles of other parameters were very 

insignificant. The result of analysis per substance is 

demonstrated in Figure 3c, indicating that the 

human health (52%) and ecosystem (47.68%) 

categories received more impact from CO2 

emission. Also, after CO2 emission, water 

consumption (WC) with ~27% endured the most 

burden in the ecosystem category. The reflected 

burdens in the resources category were somewhat 

different from the others, significantly emanating 

from natural gas consumption (58.47%). The 

evaluation of the endpoint impacts showed the 

prominent role of electricity generation and 

utilization on human health, ecosystems, and 

resource categories. The environmental impacts 

mainly emanated from natural gas and oil 

consumption to provide energy for the WWTP. 
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These results were in accordance with, who 

reported that using crude oil as a source of 

electricity supply induced irreparable effects on the 

existing resources. Benetto et al. [26] also declared 

that electricity production could contribute up to 

60% to the depletion of natural resources, which 

confirmed the obtained results. According to the 

literature [27,28], the release of minerals from 

WWTPs intensifies respiratory problems and 

endangers human health, which has been proven 

by previous investigations [1,25]. The CO2 emission 

from fossil fuel combustion was determined as the 

main factor in the human health and ecosystem 

categories. In other words, the release of sulfur 

dioxide and its combination with atmospheric 

water vapor produces sulfuric acid, negatively 

affecting human health and ecosystems. The role 

of electricity and the emitted chemicals and 

natural gas from the sludge burning process on 

human health was also reported by [29]. 
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Fig. 3. (a) The environmental impacts at the endpoint 

level (b) analysis per process and (c) analysis per 

substance.3.3. Energy and exergy of WWTS 

The energy flow in the system and the total energy 

required in the activated sludge WWTS were 

evaluated using CED analysis. In this research, the 

main energy sources of the system were as follows: 

non-renewable fossil fuels (97.75%)> non-

renewable nuclear fuel (2.17%)> and other sources 

(2.08%). Per the analysis results of the midpoint 

and endpoint levels, it is evident in Figure 4a that 

electricity production (96%) was the most 

important source of energy consumption in the 

WWTS process. After electricity, the COD 

component occupied second place (<4%). The role 

of other factors in this field was very small and 

negligible. The analysis per process in the category 

of non-renewable fossil fuels was carried out as the 

most important source of energy supply in this 

study (Figure 4b). This analysis showed that 

electricity production and COD played a role of 

97.88% and 1.99% in the consumption of non-

renewable fossil fuels, respectively. On the other 

hand, analysis per substance was performed to 

determine the type of energy sources in the 

category of non-renewable fossil fuels (Figure 4c). 

The results illustrated that natural gas and oil had 

a role of respectively 63.16% and 35% in providing 

energy from fossil fuel consumption. However, to 

better evaluate the energy efficiency and the 

amount of useful energy of the activated sludge 

WWTS, CExD analysis was performed; the results 

are drawn in Figures 4d-f. As shown in the figure, 

the energy and exergy of the WWTS followed a 

completely similar trend. Based on the analysis, 

96.77% of the total consumed energy in the system 

(40.19 MJ) supplied from the source of non-

renewable fossil fuels was optimally consumed, 

and the rest was wasted in unobtainable forms of 

energy. The main effects of CED were attributed to 

fossil fuel utilization in the electricity supply. In this 

regard, Mehboudi et al. [12] pointed out the 

contribution of 95.75% of non-renewable fossil 

fuels in CED, which natural gas and crude oil mostly 

contributed with a share of 63.78% and 34.66%, 

respectively, confirming the results of the current 

study. The contribution of natural gas and crude oil 

in energy production was detected as 61.35% and 

36.74%, respectively, which was in line with Abyar 

et al. [7]. They referred to the key role of fossil fuels 

(94.43%) in the CED analysis of the Step Bio-P 

system concerning crude oil and natural gas 

utilization. Although WWTPs are different in terms 

of structure and function, they have a certain and 

similar technology. Therefore, the role of fossil fuels 

as the main supplier of energy in WWTPs cannot be 

ignored, especially regarding aeration, which 

accounts for 40% to 55% of the total energy 

consumption. The CExD analysis also determined 

the significant role of electricity in the 

environmental burdens, mainly attributed to 

natural gas (61.34%) and crude oil (36.74%), which 

were consistent with the findings of Benetto E. et 

al. [26]. The difference in CExD values with the 

literature [30] was due to the difference in the 
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influent wastewater characteristics, especially the 

COD value. 
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Fig. 4. (a) Energy flow of the activated sludge WWTS, (b) 

Analysis per process, (c) Analysis per substance, (d) 

Exergy analysis, (e) Analysis per process, and (f) Analysis 

per substance. 

3.4. Carbon footprint and GHG emission 

The GGP analysis was conducted to evaluate the 

carbon footprint and GHG emissions. The highest 

CO2 release was as follows: emission from fossil 

fuels (99.78%)> biogenic (0.13%)> other sources 

(0.09%). According to Figure 5a, electricity 

production contributed the most to the emission of 

CO2 in all impact categories. The per-process 

analysis also depicted the significant role of 

electricity (98.75%) and COD (1.05%) in the CO2 

emission originating from fossil fuel consumption 

(Figure 5b). On the other hand, the per-substance 

analysis (Figure 5c) indicated the substantial role 

of electricity in CO2 (93.72%) and CH4 (22.4%) 

emissions. Regarding the global warming potential 

analysis, fossil fuels (99.78%) were the main source 

of emitted CO2 from the wastewater treatment 

system, which was used in electricity production. 

The main GHGs were CO2 and CH4, contributing 

92.77% and 4.03%, respectively. Nowrouzi and 

Abyar [17] reported the contribution of fossil fuel 

consumption (95.99%) in CO2 emissions, which 

CH4 (77.55%) and CO2 (23.34%) release and 

electricity consumption (11.61%) were mainly 

responsible for global warming. Another study [8] 

also presented the contribution of GHG in CO2 

emissions as CO2 >> CH4 > N2O, which was 

consistent with the results of the present study. 

Notably, the aerobic wastewater treatment and 

anaerobic digestion of organic materials, as well as 

the combustion of fossil fuels to provide electricity 

and thermal energy are critical factors in the 

emission of GHGs [7]. Given this, the replacement 

of fossil fuels with clean energy sources and the 

application of advanced wastewater treatment 

technologies with an energy-saving approach is 

vital. 
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Fig. 5. GGP analysis of the wastewater treatment 

system (a), per-process (b), per-substance and (c) 

analyses.  

3.5. Sensitivity analysis 

The sensitivity analysis provides a management 

approach to identify the priority of operational 

parameters to control. The characterization 

analysis showed the highest contribution of 

electricity and COD parameters to environmental 

impacts. Hence, a change of +20% in the two 

aforementioned factors was conducted. As can be 

seen in Table 2, the OD category (19.89%) was the 

most sensitive impact category, followed by TA 

(19.77%) > PMF (19.71%) > EOF (19.70%) 

categories. The sensitivity of the parameters to 

COD changes was much lower than that for 

electricity, including the WC (2.028%) > LC 

(1.239%) > EF (1.06%) categories. The sensitivity 

analysis showed the main role of electricity in the 

environmental burdens of the wastewater 

treatment system. Nowrouzi and Abyar [17] also 

declared the influence of 88.19%-3.09% of 

electricity on global warming and ozone depletion, 

respectively. In addition, Abyar et al. [13] 

mentioned the contribution of electricity in the 

environmental impact of the A2O system from -

11.97% to +8.55%; also, the reduction of energy and 

fossil fuel consumption subsequently decreased the 
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adverse impact of global warming, ozone 

depletion, and ecotoxicity, which confirmed the 

results of the present study. Therefore, controlling 

energy usage is essential to optimize the 

environmental impacts of the activated sludge 

system in petrochemical industries. 

4. Conclusions 

Given the essential role of electricity in the 

emergence of environmental impacts, it can be 

concluded that replacing fossil fuel-based energy 

with renewable energies can significantly reduce 

environmental burdens. Moreover, the activated 

sludge system can be applied on an industrial scale 

to reduce environmental pollutants. It is worth 

mentioning that performing LCA projects before 

the application of WWTPs on a large scale can 

considerably highlight the environmental effects. 

This information can be valuable to decision-

makers in improving the efficiency of industrial 

projects and ensuring their compatibility with 

environmental principles to achieve sustainable 

development. 
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