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 The objective of this study was to investigate the sources of tropospheric ozone 

(O3) precursors in an urban area using principal component analysis. 

Chemically reactive conventional pollutants such as carbon monoxide (CO), 

carbon dioxide (CO2), nitric oxide (NO), and nitrogen dioxide (NO2), as well as 

some selected meteorological parameters such as global solar radiation (SR), 

air temperature (AT), relative humidity (RH), wind speed (WS), and wind 

direction (WD), were incorporated in this analysis. Real-time observation data 

were obtained from two monitoring stations, Limbayat and Varachha, situated 

in Surat city, India. The occurrence of a peak O3 level in the summer at 5 p.m. 

proved the well-known fact of interconnection among the temperature, solar 

radiation, and increment in O3 concentration. The potencies of CO and NO 

were remarkable in either the first or second principal component (PC) 

observed at both locations with more than 45% concentration, which alluded 

that the main source of O3 was urban transportation and AT contributed with 

50% weightage in the PC ascertained key role of photolysis process in the O3 

formation. 
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1. Introduction 

Surface ozone is a colorless, reactive oxidant gas 

and a secondary pollutant formed from 

photochemically active primary pollutants. In 

2009, the Indian Central Pollution Control Board 

(CPCB) announced revised air quality standards to 

control O3 pollution, which included one-hourly 

(180 μg/m3) and eight-hourly (100 μg/m3) 

permissible limits for tropospheric O3.
 Also, O3 was 

included in the list of criteria pollutants, as 

prescribed by the CPCB [1].  O3 is becoming a major 

concern as its concentration is increasing 

gradually, causing damage to plants and either 

directly or indirectly threatening human health 

even at low concentrations, as reported by Pleijel 

[2]. Therefore, to develop an emission control 

strategy, it is necessary to investigate the sources 

of O3 formation, i.e., whether O3 levels are 

governed by local sources (generated in the region 

itself) or foreign sources (transported from 

adjacent regions). The O3 levels were found to be 

influenced by intra-urban activities and also by 

long-range transport [3]. In the troposphere, O3 

https://aet.irost.ir/
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 variation is developed by its precursors and 

meteorological conditions [4,5]. Along with 

anthropogenic emissions (fossil fuel, solvents, 

transport), natural sources (lightning, wetlands, 

forests) also contribute to O3 precursor gases such 

as NOX, CO, CH4, and NMVOC that interact with 

climatic factors [6]. The role of O3 precursors can 

be revealed based on O3 formation chemistry. 

Sunlight (accompanied by other O3 forming 

compounds) is a directly proportional factor and 

mostly responsible for O3 formation, as reviewed by 

Lu et al. [7]. In India, huge variations are found in 

sunlight and temperature; therefore, the 

measurement dataset is distributed according to 

the seasons to observe its temporal variations. The 

temporal variability in O3 is governed by the 

atmospheric process of the seasons, as 

characterized by Roberts-Semple et al. [8]. The 

information gained regarding pollutant sources 

and their contribution to ambient air pollution 

levels is known as Source Apportionment (SA) [9]. 

Two source apportionment models, namely positive 

matrix factorization and chemical mass balance, 

have been applied to discover the sources of 

particulate pollutants [10]. To identify the source 

contribution of aerosol, chemical characterization, 

temporal trends, and positive matrix factorization 

were performed near Houston, TX, USA [11]. Among 

the several types of correlation coefficients, 

Pearson's correlation coefficient is commonly 

used to measure the relationship between 

independent and dependent variables in linear 

regression and in the case of the unknown nature 

of the dataset. Pearson’s coefficient was recently 

used to assess air pollutants with statistical tools in 

Madrid, Spain [12]. It has been used to evaluate the 

association between O3 and its influencing 

parameters in the form of values between -1 and 

+1. The interpretations of 0, >0, and <0 are no 

association, positive association, and negative 

association, respectively. Here, a p value <0.01 is 

considered for statistical significance. Principal 

component analysis (PCA) is a primary tool used to 

screen the sources that control O3 concentration. A 

large number of datasets that correlate with each 

other are converted to a compressed number of 

non-correlated and orthogonal variables that 

constitute a cluster, as evaluated by Martínez and 

Polanco [13]. PCA is used as a dimensionality 

reduction statistical technique in which datasets 

consisting of numerous interrelated variables are 

transformed to the most important uncorrelated 

new variable set, known as the principal 

component, with a large variance [14]. The highest 

possible variance occurs in the dataset represented 

in the first PC. In general, the size of the PC set is 

the same as the original dataset, and 80% of the 

total variance of the whole original dataset is 

considered in general. Standardization is used in 

the case of different unit measurements and where 

the data are measured on a large scale. According 

to the Kaiser criterion, PCs with an eigenvector 

greater than one are considered. Rotated PCs have 

a high impact in characterizing the potential group 

of non-correlated variables. The focus of this study 

was to investigate the potential sources of 

tropospheric O3 with the help of PCA. Carbon 

monoxide (mg/m3), nitrogen dioxide (μg/m3), 

carbon dioxide (ppm), nitric oxide (μg/m3), air 

temperature (°C), relative humidity (%), global 

solar radiation (W/m2), wind direction (°), and 

wind speed (m/s1) were considered as the 

independent variables. 

2. Materials and methods 

2.1. Description of the study area and instruments 

used 

The city of Surat is situated in the western region of 

India on the bank of the Tapi River at a latitude of 

21.1702° N and a longitude of 72.8311° E. The city has 

an altitude of 13.0 m from the mean sea level and 

covers an area of 474 km2. Surat has a population 

more than 70 lacs, making it the eighth densely 

populated city (Census of India, 2011) in Gujarat. 

Real-time continuous air quality monitoring data 

were collected from the Surat Municipal 

Corporation at two locations, Limbayat and 

Varachha, situated at a distance of 3.6 km from 

each other. A continuous monitoring system was 

installed in both sites. The readings were recorded 

on an hourly basis. The monitoring point was kept 

on the terrace of the Surat Municipal Corporation 

building at the height of 15 m from the ground level 

in both locations. The sampling sites represent a 

typical urban atmosphere, surrounded by colossal 

roadside traffic, with an industrial area nearby. 

Polludrone's Continuous Ambient Air Quality 

Monitoring system (CAAQMS) was used to measure 
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 the gaseous pollutants and the meteorological 

factors. The CO2 was measured using the non-

dispersive infra-red principle that has a 20-ppm 

detection limit. The CO, NO, NO2, and O3 were 

determined based on the electrochemical principle 

that has detection limits of 100 ppb (11.45 mg/m3), 

10 ppb (12.5 μg/m3), 10 ppb (18.8 μg/m3), and 10 

ppb (20 μg/m3), respectively. An ultrasonic sensor 

was used to measure wind speed (0–60 m/s) and 

wind direction (360°). The detection ranges of the 

respective sensors were 0 –40,000 μg/m3 for O3, 0– 

1000 μg/m3 for PM2.5 and PM10, 0 –1000 μg/m-3 for 

CO, 0 –37,600 μg/m3 for NO2, 0– 52,400 μg/m3 for 

SO2, and 0– 5000 ppm for CO2. To get higher data 

accuracy, an innovative e-breathing approach was 

adopted by the company who installed the 

CAAQMS system at the site. Sensor calibration for 

all the parameters was carried out by the 

manufacturer in the National Accreditation Board 

Laboratories; the gas calibration was done with 

pure air and calibration gas at a high concentration 

range of 1-10 ppm and flow rate of 0.5L/min before 

installation.  As per the information available by 

the manufacturer of the instrument, multi-level 

sensor calibration was performed at a factory with 

a bump test calibration facility, to test the working 

efficiency. Spot calibration was performed for a 

limited data before installation of sensors. Figure 1 

shows the two monitoring locations in Surat, India, 

and the instrument setup at Varachha. Surat has a 

minimum temperature of around 10°C during the 

winter nights and a maximum temperature of 46°C 

during summer in the afternoon. Therefore, 

considerable variations in O3 concentrations are 

found throughout the year. The diamond industries 

of Surat occupy about 35%– 40% of the total area 

(approximately 37 sq. km) of Varachha. The rest of 

the region is residential and commercial with heavy 

traffic areas. The Limbayat area is surrounded by 

chemical dyeing and power-loom industries, 

covering approximately 70% of the total area 

(approximately 19.6 sq. km). The textile industry 

emits a high pollution load in the form of CO, CO2, 

NOx, and particulate matter, as reviewed by Mia et 

al. and Tiwari et al. [15,16]. 

 

 

 

 

 

 (a) (b) 

  

Fig.1. (a) Location of the ambient air quality monitoring stations (b) Real-time monitoring instrument setup at 

Varachha.

2.2. Data preprocessing 

The concentrations of the above-stated 

parameters were recorded in the two monitoring 

sites from Feb 1, 2018, to Dec 14, 2019, at Limbayat 

and from Jan 30, 2018, to Dec 21, 2019, at 

Varachha. The outlier data were removed from the 

O3 data series after ascertaining that there was no 

occurrence of any O3 episodic event on the 

corresponding day. Such events can be attributed 

to local photochemistry and transport [17]. In the 

past, research was focused on potential vorticity 
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 (PV), which is a measure of air turbulence. PV > 1.5 

(PV unit; 1 PVU = 10-6 km2 kg-1s-1) in the troposphere 

is an indicator of stratospheric O3 sinking; Lai et al. 

[18]. The global model of the European Centre for 

Medium-Range Weather Forecasts, using the 

Lagrangian method, found that the PV values at 

different pressure levels (300 hPa–975 hPa) change 

with altitude; Spreitzer et al. [19]. At the preceding 

and succeeding day when the highest O3 

concentration occurred, PV was <1.5 PV at all 

pressure levels in the 20°N–24°N latitude and 71°E–

75°E longitude ranges. These data suggest the 

absence of the vertical transport of O3 from the 

stratosphere during the corresponding days. The 

datasets of PV were acquired from the website: 

 http://apps.ecmwf.int/datasets/data/interim-

full-daily//; Sandhya et al. [20]. Moreover, high 

concentrations of O3 were not found in the 

photochemically inactive hours, which indicated 

that there was no long-range transportation 

during the aforesaid days. Hence, the high 

concentration values of a total number of eight 

days were removed from the whole dataset after 

verifying the above criteria. During the day for the 

respective hour, there was low-to-moderate 

intensity of global SR and wind speed; hence, the 

photolysis process in the local region must have 

been responsible for the observed O3 

concentration. The missing values and non-

detected (below detection limit of the particular 

sensor) values of the variables were found due to 

instrument maintenance in the entire dataset. For 

the missing data, the cubic spline interpolation 

method was applied, as suggested by Junninen et 

al. and Moshenberg et al. [21,22], for a 24-h diurnal 

cycle. The readings recorded as a below detection 

limit was substituted with a constant value, such 

as the LOD (limit of detection of the instrument) 

divided by the square root of 2 (thumb rule), to 

make the dataset reliable.  

3. Results and discussion 

3.1. Monthly and seasonal O3 variations 

This paper attempts to analyze the O3 behavior in 

an urban area located in the industrial and 

commercial zone. Table 1 presents a summary of 

the data for O3, as evaluated by descriptive 

statistics. The average hourly data for 2018 and 

2019 at Limbayat and Varachha were taken for 

further processing. The maximum concentrations 

of O3 were found in the summer season at both 

locations, except at Limbayat in 2019. The highest 

concentration was found at Limbayat in the 

summer of 2018 (445.22±65.53), followed by 

Varachha in 2018 (351.4±64.75) as shown in Table 1. 

The O3 concentration in Mumbai under normal 

conditions (before the COVID-19 lockdown) 

fluctuated between 40 and 90 μg/m3 [23]. Hourly 

O3 variations can be observed by using a time-series 

plot, as shown in Figure 2. It indicated that hourly 

averaged O3 concentrations exceeded above the 

threshold (180 μg/m3) in 2018 at both locations. The 

data were further distributed season-wise, i.e., 

winter (January, February), summer (March, April, 

May), southwest monsoon (June, July, August, 

September), and post-monsoon (October, 

November, December), as defined by the Indian 

Meteorological Department, to examine the 

season-wise O3 behavior.  

Out of the four seasons, the maximum O3 

concentrations were observed in the summer 

(except at Limbayat, 2019). Therefore, to analyze 

further, summer diurnal variations in O3 were 

compared with other independent parameters at 

Limbayat, as illustrated in Figure 3. The red colour 

O3 concentration curve (Figure 3) depicts a strong 

correlation with AT in  the summer. At mid-day, 

both concentrations reached their peak. In the 

morning, NO reached its maximum at about 10 

a.m., indicating the high congestion in road 

transport. Consequently, the O3 concentration 

increased in the sunlight with NO titration as per 

ozone photochemistry. During the night, in the 

absence of SR, NO2 was not converted into NO and 

increased gradually, as shown in Figure 3. All these 

processes proved that photolysis was the governing 

process.  

http://apps.ecmwf.int/datasets/data/interim-full-daily/;S
http://apps.ecmwf.int/datasets/data/interim-full-daily/;S
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Table 1. Descriptive Statistics of O3 (μg/m3) at Limbayat and Varachha for 2018 and 2019.   

Monitorin

g  

station 

Year Seasons 
N Sample 

size 

Number of hours 

for O3 

concentration 

more than 

threshold value 

Max. 

Μg/m3 

Mean 

Μg/m3 

Standard 

deviation 

Μg/m3 

Limbayat 

2018 

Winter 576 22 381.18 51.74 58.98 

Summer 2184 118 445.22 33.74 65.53 

Southwest 

monsoon 

4224 38 371.9 31.64 43.25 

Post-monsoon 1416 02 273.5 23.43 28.90 

2019 

Winter 1152 0 130.59 25.31 26.32 

Summer 816 0 147.3 8.49 19.56 

Southwest 

monsoon 

2880 0 105.86 8.86 11.23 

Post-monsoon 1791 0 157.39 15.53 22.83 

Varachha 

2018 

Winter 432 21 219.7 31.04 64.35 

Summer 2208 142 351.4 41.93 64.75 

Southwest 

monsoon 

2664 08 343.56 25.53 28.17 

Post-monsoon 1932 0 146.56 13.05 21.10 

2019 

Winter 1416 0 93.72 8.16 13.99 

Summer 2208 0 101.61 5.69 13.79 

Southwest 

monsoon 

2064 0 73.11 0.75 3.74 

Post-monsoon 1776 0 51.73 2.88 6.50 

 

   
(a) (b) 

Fig. 2. Time-series plot at Limbayat and Varachha for 2018 and 2019. 
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 (a) 2018 

   

(b) 2019 

   

Fig. 3. Diurnal pattern of O3 with RH, AT, NO, NO2 and CO during summer at Limbayat for (a) 2018 and (b) 2019.  

3.2. Correlation between O3 and its precursors 

SPSS software (version 16.0) was used to analyze 

the strength of the correlation between the 

dependent and independent variables. Pearson’s 

correlation coefficient formula was used to 

establish the relationship between the variables. 

The formula involves the computation of the 

covariance of two variables that are divided by the 

standard deviation of each measurement. 

rxy =  
∑ (xi − x)(yi − y) n

i=1

√∑ (xi − x)2n
i=1  √∑ (yi − y)2n

i=1  
 (1) 

Table 2 shows that the correlation coefficient has a 

value >0.4 (|r| > 0.4) between O3 and CO, NO2, CO2, 

NO, AT, RH, SR, WD, and WS during the four 

seasons at Limbayat and Varachha. The positive 

relationship between O3 and AT and the strong and 

moderately inverse relationship with RH in most of 

the seasons indicate that the source of O3 is mainly 

the photochemical processes of the primary 

pollutants.  

 

 

Table 2. Pearson’s correlation coefficient (r) between O3 

and conventional air pollutants along with the 

meteorological parameters (|r| > 0.4). 

Winter 

Limbayat Varachha 

2018 2019 2018 2019 

AT 0.468 AT 0.499 CO 0.463 AT 0.475 

RH -

0.468 

RH -

0.499 

    

Summer 

Limbayat Varachha 

2018 2019 2018 2019 

AT 0.654 CO 0.476 AT 0.579 - - 

RH -

0.549 

AT 0.583 RH -

0.527 

  

  RH -

0.493 

    

Southwest monsoon 

Limbayat Varachha 

2018 2019 2018 2019 

- - - - NO -

0.529 

- - 

Post-monsoon 

Limbayat Varachha 

2018 2019 2018 2019 

- - - - CO2 -

0.611 

- - 

    RH -

0.452 

  

Note: (-) indicates correlation coefficient values <0.4. 

The correlation values mentioned in the table are 

significant at the 0.01 level (2-tailed). 
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 3.3. PCA on multivariate data 

In this method, ten correlated elements were 

transformed into PCs. The total variance of the PCs 

was the same as the variance of the original 

variables. The PCs were arranged from the highest 

to the lowest. The first PC (PC1) represented the 

major variance in the data, and the tenth PC 

(PC10) had the lowest variance [24].  

In this study, PCA functioned in the following way: 

PCi =  ∑ vkixi

n

i=1

 (2) 

where xi is the original element in the dataset and 

vki is the eigenvector. The PCA coefficients were 

calculated with the help of the correlation matrix, 

identity matrix, and eigenvalue. The PC scores 

obtained from the summation of the products of 

the original variables’ value and their loadings were 

utilized for further interpretation. PCA was 

performed using the R open access software along 

with packages such as FactomineR and 

FactoInvestigate. The Varimax function was used 

for rotating the components toward their principal 

axes to develop the rotated factor loadings. PCA 

was applied to ten different variables seasonally to 

analyze the dependence of O3 concentration on 

other variables. The first two PCs of all the variables 

were used owing to high variances, as shown in 

Table 3. The results obtained from the PCA, 

correlation study, and a previous research paper 

(based on the chemical reaction involved in O3 

formation) have been included to identify the 

primary source of the secondary pollutant O3. As 

seen in Table 4, the release of CO moderately and 

strongly influenced the increment of O3 throughout 

the year in both 2018 and 2019 at Limbayat.  

 Table 3. First two PCs of all elements for 2018 and 2019. 

Winter 

 Limbayat Varachha 

Elements 
2018 2019 2018 2019 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

CO -0.046 0.895 -0.033 0.838 0.315 -0.437 0.771 -0.139 

NO2 0.042 0.112 -0.755 -0.108 -0.066 0 0.207 -0.737 

O3 0.848 -0.134 -0.013 0.105 0.588 0.312 0.426 -0.179 

CO2 -0.046 0.03 0.02 -0.192 -0.111 0.118 0.054 -0.053 

NO 0.287 0.394 0.203 0.88 0.101 -0.063 0.768 0.35 

AT 0.715 0.086 0.736 -0.046 0.9 0.03 0.296 0.528 

RH -0.691 -0.366 -0.277 -0.436 -0.814 0.307 -0.828 -0.047 

Solar 0.386 0.147 0.799 0.142 0.74 0.201 0.428 0.746 

WD -0.457 -0.464 0.132 -0.092 -0.272 0.472 -0.248 0.012 

WS 0.013 -0.141 0.043 -0.106 0.12 0.863 -0.105 0.106 

In most urban areas, aerosol and CO are the 

leading gases emitted from gasoline fueled vehicles 

[25]. During 2007–2017, more than 28.87 lakh 

motor vehicles were registered in Surat City; it is the 

fastest growing city in the last ten years, followed 

by Kanpur and Pune [26]. Emission inventory was 

done in Bengaluru in 2015, and it was observed that 

vehicular exhaust contributed to 70.7% of the CO 

emission [27]. Regarding the season-wise 

formation of the PCs, CO and NO were found in a 

group either by PC1 or PC2 in most of the seasons. 

Hence, it could be stated that the main source of 

O3 precursor was vehicular exhaust. In the summer 

season (Table 4) at Limbayat, O3 was grouped with 

CO and CO2 along with AT and RH in 2019. 

Furthermore, particulate matter, nitrogen oxide, 

CO, and hydrocarbons are vehicle criteria 

pollutants [28]. In the commercial area of 

Varachha, WD and WS played important roles 

(Table 4). Hence, O3 levels can be controlled by 

equipping the vehicle engines with the latest 

technologies. On the other hand, the Centre for 

Science and Environment reported increased levels 

of O3 during the COVID-19 lockdown in 22 cities 

across India even though it flattened the NO2 curve 

[29]. The data were unavailable for March and April 

in 2019 at Limbayat, owing to instrument 

maintenance. 
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Table 4. Summary of the variables with the highest contribution in the first two PCs. 

Limbayat 

Winter Summer Southwest monsoon Post-monsoon 

2018 2019 2018 2019 2018 2019 2018 2019 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

O3 NO WS CO O3 CO CO SR AT WD NO2 CO AT NO NO2 CO2 

AT CO NO NO2 AT NO O3  RH WS AT NO RH WS NO O3 

RH  O3  RH WD CO2 NO2 SR CO RH  SR NO2 AT  

WD  AT  SR  AT   NO SR   O3 RH  

WS  RH  WS  RH    CO2    SR  

  SR    SR          

Varachha 

Winter Summer Southwest monsoon Post-monsoon 

2018 2019 2018 2019 2018 2019 2018 2019 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

NO2 CO CO CO2 O3 CO2 CO CO2 AT CO NO O3 CO O3 NO NO2 

AT O3 NO WS AT CO NO WS RH CO2 AT NO2 NO CO2 AT WD 

RH  AT  RH NO AT WD SR WS RH  AT  RH WS 

SR  RH  SR  RH    SR  SR RH SR  

  SR  WS  SR          

4. Conclusions 

In this research work, the O3 concentration 

variations with seasons were analyzed at two 

locations, Varachha and Limbayat of Surat city. 

With PC variable loadings, the relationship of O3 

with other pollutants, and several meteorological 

factors were investigated. In a seasonal diurnal 

pattern, a higher concentration of surface O3 was 

observed during the daytime, especially afternoon 

or early evening, when compared with the 

nighttime due to the higher temperature. In the 

entire year, the maximum O3 concentration was 

noted in the summer, owing to the influence of 

meteorological parameters such as AT and SR. This 

result was also proven by the moderate correlation 

coefficient between tropospheric O3 and 

temperature in the summer season at both 

locations. In the PC variable loadings, the group of 

NO and CO in the first or second PC revealed the 

effect of the local source, i.e., road transport is the 

main source. The meteorological factors with O3 in 

the same cluster disclosed the presence of 

photochemical reactions of ozone. Conclusively, in 

the numerical or chemical source apportionment of 

ozone, PCA can be used as an effective pre-

processor tool. 
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