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 In this study, spatial zoning models were compared to evaluate the concentrations of PM 
2.5 on a large scale in the urban landscape of Tehran. The spatial analysis of PM 2.5 
concentration was conducted based on the data from twenty-four stations that measure 
and monitor the air in Tehran. Three interpolation models were used to assess the air 
pollution status via Arc GIS 10.6.1 software: universal kriging (UK), ordinary kriging (OK), and 
inverse distance weighted (IDW).  The root mean square error (RMSE) and correlation 
coefficient (R2) were applied to compare the spatial models and select the best model. 
Standardized root-mean-square error (RMSE) was used to select the best conditions for 
running the OK and UK models. The results showed that the southern and central regions of 
Tehran had high concentrations of PM 2.5, and the annual mean of all the stations exceeded 
the EPA standard (15 μ/m3). According to the annual average, station 16 had the highest 
concentration of PM2.5 (112.75 μ/m3).  The results of RMSE showed that the OK model was 
more suitable than the others for the spatial zoning of air pollution in the urban landscape 
(RMSE=9.322). 
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1. Introduction 

Currently, air pollution is an important issue in many parts 
of the world. Air pollution is responsible for 4% of all deaths 
globally [1,5]. Fine particulate matter is an air pollutant with 
a diameter between 0.00002 and 500 micrometers [1]. 
Particles with a diameter of fewer than 10 micrometers (PM 
10) and 2.5 micrometers (PM 2.5) penetrate deeply into the 
lungs and have adverse effects on people's health [2]. New 
research indicates that PM 2.5 is more harmful than PM 10 
[3-4]. PM 2.5 particles pose serious risks to lung function 
and cause cardiovascular problems [6]. New studies show 
that PM 2.5 particles cause 3.5 million deaths per year from 
cardiovascular disease and 220,000 deaths from lung cancer 
[7-8]. A number of studies have linked long-term exposure 
to PM 2.5 particles with mortality in Europe [9-11] and 
America [12-13]. Studies in Asian countries were conducted 
at relatively high exposures [14-16]. Ansari and Ehrampoush 
[17] concluded that long-term exposure to PM2.5 increases 
the risk of cardiorespiratory and lung cancer mortality in 

Tehran, Iran. There are several ways to estimate air 
pollution. One of the spatial analysis models is inverse 
distance weighted (IDW), in which weights are proportional 
to the inverse of the distance [18]. In the IDW method, it is 
not necessary to determine the pattern of spatial changes 
[19]. This method calculates an average value for 
unsampled points using values from nearby weighted points 
[18-19]. The kriging model is another interpolation method 
for spatial analysis based on regression [20]. In this method, 
the determination of weight is based on the distance 
between the surrounding points and correlation among the 
measured points [21]. Sampson et al. [22] used the 
universal kriging (UK) model for estimating the annual PM 
2.5 concentrations in ambient air quality across the U.S; it 
demonstrated a very high level of cross-validated accuracy 
of prediction and well-calibrated predictive intervals. The 
results of the ordinary kriging (OK) method for predicting 
long-term particulate matter concentrations in seven major 
Korean cities showed that it produced a higher cross-

http://aet.irost.ir/
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 validated R2 than the city-specific models [23]. The IDW 
method was used to assess the spatial distribution of PM 
2.5 in Tehran [23-25] and ascertained a high clustering level 
of pollutants in the study area. Given the importance of 
particulate matter concentrations, especially PM 2.5 
particles, cities are at high risk. Therefore, the PM 2.5 
concentration levels in Tehran, as the first metropolis of 
Iran, were studied in 2019. Different methods of spatial 
analysis (UK, OK, and IDW) were used to select the best 
method for zoning the PM2.5 concentration in Tehran. The 
results of this study could help policymakers to design an 
integrated air quality system and plan for the effects of this 
phenomenon. The purpose of this study was to compare 
three interpolation models, namely universal kriging, 
ordinary kriging, and inverse distance weighted, for 
assessing air pollution in Tehran.  

2. Materials and methods 

2.1. Case study 

This research was conducted in the urban landscape of 
Tehran (Figure 1). Tehran is one of the most polluted areas 
in the world [17]. It is the most populous city in Iran and 
Western Asia with a population of around 8.7 million and 
has the third-largest metropolitan area in the Middle East. 
The case study spreads from a longitude 51° 25′ 17″ E and a 
latitude 35° 41′ 48″ N. Tehran is surrounded by the Alborz 
Mountains on the northern and eastern sides. The average 
elevation of Tehran is 1200 m above sea level. Many fixed 
and moving resources affect the increase of air pollutants. 
The number of these pollutants in the urban landscape 
increases due to population growth, traffic, and the 
presence of various industries.  

2.2. Data collection 

In the study, the spatial analysis of PM 2.5 concentration 
was conducted based on data from twenty-four stations 

that measure and monitor the air in Tehran. The Arc GIS 
10.6.1 software released by ESRI was used for spatial 
analysis, and Excel 2019 was used to draw the diagram and 
other data analyses.  Three interpolation models were used 
to assess the air pollution status of the metropolis of 
Tehran: universal kriging (UK), ordinary kriging (OK), and 
inverse distance weighted (IDW). Finally, the best model for 
zoning the air pollution in Tehran was selected by 
comparing the three models. 

2.3. Models 

2.3.1. Ordinary kriging (OK) 

The ordinary kriging is a geostatistical method based on the 
weighted moving average to estimate a value at a point of 
region [26]. The OK method is the best linear unbiased 
estimator and is defined as follows (Eq. 1): 

Z ∗ (xi) = ∑ λiz(

n

i=1

xi) (1) 

where Z*(Xi) is the estimated factor, λi is weight or value of 
quantity depending on sample i, and z is the value of the 
variable. This type of kriging is called a linear kriging because 
of a linear combination of n, and it searches the 
neighborhood of xi [27]. 

2.3.2. Universal kriging (UK) 

In the UK method, it assumes the component of spatial 
correlation between points and a drift or trend in z values. 
In this case, the kriging combines with the mathematical 
models of one or two variables [28]. For example, 
mathematical models with one and two variables are added 
as follow [Eq. 2 and Eq. 3]: 

M = b1xi + b2yi (2) 

M = 𝑏1𝑥𝑖 + 𝑏2𝑦𝑖 + 𝑏3𝑥𝑖
2 + 𝑏4𝑥𝑖𝑦𝑖 + 𝑏5𝑦𝑖

2 (3) 

Fig. 1. Location of Tehran and the air quality monitoring stations.  
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 where M is the trend of xi and yithat are the coordinates of 
the points for sample i and bi is the coefficients of the trend. 
This model is known as a spatial model with a trend or 
model in the presence of drift. The locating trend or drift 
indicates any detectable tendency for the values to change 
as a function of the coordinate variables [29]. Also, the map 
of the "standard prediction error" is produced for the two 
kriging models in GIS.  

2.3.3. Inverse distance weighted (IDW) 

The IDW is the determined values of unknown points 
assigned with a weighted average of the values of known 
points [30]. These weights are calculated by the 
mathematical power of weights. The larger powers reduce 
the effect of points farther from the estimated point, and 
the smaller powers distribute the weights more evenly 
between the adjacent points [29]. This method considers 
their distance, regardless of the position and arrangement 
of the points. In other words, points that have the same 
distance from the estimated point also have the same 
weight. The value of the weighting factor is calculated by 
using the following equation (Eq. 4): 

λi=(Di − α)/∑ Di −  αn
i=1  (4) 

where λi is the weight of station i, Di is distance between 
station i and an unknown point, and α is the weighting 
power. The root mean square error (RMSE) is used to 
compare the models and select the best one. The RMSE 
method is as follows (Eq. 5) [19]: 

RMSE = √
1

n
∑(qi − qi)

2

n

i=1

 (5) 

The standardized RMSE is used to select the most optimal 
conditions for performing the OK and UK models. The 
standardized RMSE formula is as follows (Eq. 6): 

Standardized RMSE =  √
1

n
∑(

qi − qi

ơi

)2

n

i=1

 (6) 

where n is value of data, qi is value of measurement, and ơ𝑖 
is the standard prediction error [29]. 

3. Results and discussion 

Figure 2 presents the collected data on the air pollution 
situations in Tehran for PM 2.5, according to the 2019 
seasonal average. Based on these results, the highest 
seasonal average of PM 2.5 concentration occurs in the 
autumn in Station 16 (142 μ/m3). Station 13 has the lowest 
average seasonal pollution in the spring (51 μ/m3). 
According to the annual average, Station 16 has the highest 
concentration of PM2.5 (112.75 μ/m3). The statistical 
summary of the air pollution situations in Tehran for PM 2.5 
is showed in Table 1. The total seasonal average of the 
stations was 96.375 μ/m3, 97.083 μ/m3, 87.166 μ/m3, and 
72.291 μ/m3 for winter, autumn, spring, and summer, 
respectively. The data showed that the highest average 
concentration occurred in the autumn (97.083 μ/m3). 
 
Table 1. Statistical summary of air pollution situations in Tehran 
for PM 2.5 in 2019. 

Parameter  PM 2.5 

Annual average  88.229 
Standard deviation  13.703 

Min  60.751 
Max  112.752 

Seasonal average 

Winter 96.375 
Autumn 97.083 
Summer 87.166 
Spring 72.291 

 

 

Fig. 2. Seasonal average of air pollution situations in Tehran for PM 2.5 in 2019. 

0

20

40

60

80

100

120

140

160

st
at

io
n

 1

st
at

io
n

 2

st
at

io
n

 3

st
at

io
n

 4

st
at

io
n

 5

st
at

io
n

 6

st
at

io
n

 7

st
at

io
n

 8

st
at

io
n

 9

st
at

io
n

 1
0

st
at

io
n

 1
1

st
at

io
n

 1
2

st
at

io
n

 1
3

st
at

io
n

 1
4

st
at

io
n

 1
5

st
at

io
n

 1
6

st
at

io
n

 1
7

st
at

io
n

 1
8

st
at

io
n

 1
9

st
at

io
n

 2
0

st
at

io
n

 2
1

st
at

io
n

 2
2

st
at

io
n

 2
3

st
at

io
n

 2
4

Winter Autumn Summer Spring



  N. Birjandi et al / Advances in Environmental Technology 3 (2019) 185-191  
188 

 The results of using the UK, OK and IDW methods in the Arc 
GIS environment are presented in Figures 3, 4, and 5, 
respectively. The two parameters RMSE and Std. RMSE 
were used to select the semivariogram type for data 
normalization in the two kriging models. In this study, the 
spherical semivariogram and Cox-Box with a power 
parameter equal to one were used as the best options for 
running the OK and UK models. Variograms were applied to 
determine and describe the spatial structure of the data. 
Variography is the first step in modeling a spatial structure 

to use in kriging. The spherical variogram model starts from 
the coordinate origin and has a linear behavior near the 
origin. As the value increases in the direction of the X-axis, 
the curve rises rapidly toward higher values of the Y-axis. 
Then, it gradually decreases its slope and reaches its highest 
limit at a certain distance, which is called impact range, and 
stops at the same value. According to the zoning maps, the 
central and southern regions of the city showed a high 
concentration of PM 2.5 with undesirable situations 
compared to the northern and eastern regions of Tehran; 
so, there are more concerns in these areas.  

 

Fig. 3. The result of UK method for spatial zoning in Tehran. 

 

Fig. 4. The result of OK method for spatial zoning in Tehran. 
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Fig. 5. The result of the IDW method for spatial zoning in Tehran. 

RMSE and R2 indices were used to compare the IDW, OK, 
and UK models and to select the optimal model in the PM 
2.5 air pollution zoning in Tehran. The results of the indices 
are given in Table 2. 

Table 2. Comparison of three interpolation models. 

Model RMSE Std. RMSE R2 

Ordinary Kriging 
(OK) 

9.322 1.325 0.798 

Universal Kriging 
(UK) 

11.251 1.132 0.712 

Inverse Distance 
Weighted (IDW) 

12.247 - 0.663 

According to the results of Table 2, the values of RMSE are 
9.322, 11.251, and 12.247 for OK, UK, and IDW, 
respectively. The OK model has better conditions for 
modeling (RMSE=9.322). Also, the results showed that the 
OK model had the highest correlation coefficient (R2=0.798) 
compared to the other two models. These findings are 
supported by previous studies as they document that the 
OK model is more suitable than the other methods [22,29] 
and make the best RMSE  and R2 in spatial zoning of air 
pollution [29]. Another study by Norpoor and Feyzi [31] 
regarding Tehran found that the OK model estimated 
sampled points without bias and had the lowest RMSE for 
modeling air pollutants. A study in America [32] showed 
that the values of R2 and RMSE were (0.74,8.163), 
(0.79,6.983) and (0.78, 7.23) for IDW, OK, and UK models, 
respectively. These results showed higher efficiency of the 
OK model, which confirms the results of the present study. 
The study revealed that stations in the southern and central 
regions in Tehran have high concentrations of PM 2.5 and 
the annual average of all the stations exceeded the EPA 
standard (15 μ/m3). This finding is similar to the results of 
studies conducted by Halek and Kavousi-Rahim [33], Habibi 
et al. [23], Haghparast et al. [25], and Pardakhti and 

Ebrahimi [24] indicating that the above-mentioned air 
pollution situation was undesirable in these stations.  
 

4. Conclusions 

Three interpolation models, namely universal kriging, 
ordinary kriging, and inverse distance weighted, were used 
to evaluate and compare the air pollution status in the 
urban landscape of Tehran. The results showed that the 
stations of the southern and central regions in Tehran have 
high concentrations of PM 2.5, and the annual average of all 
the stations exceeded the EPA standard (15 μ/m3). The 
comparison of the three models based on the RMSE index 
showed that the OK model is more suitable than the other 
methods for the spatial zoning of air pollution in the urban 
landscape (RMSE=9.322). According to the average annual 
concentration of PM 2.5 in the air pollution monitoring 
stations in Tehran, the concentration exceeds the 
international standards annual mean (EPA=15 μ/m3, 
WHO=10 μ/m3).  It should be noted that this could result in 
major health risks and adverse effects on the population of 
Tehran. Therefore, it is possible to reduce the level of air 
pollution in Tehran by increasing public transportation and 
green space, replacing aging vehicles, and improving the 
quality of fuel. Finally, it should be noted that the use of 
geographical maps allows for the rapid spatial analysis of air 
pollution and a better understanding of the situation in 
spatial zoning. 
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