Assessment of anti-bacterial activity of non-thermal plasma in sterilization of infectious wastes

Document Type: Research Paper

Authors

1 School of Environment, College of Engineering, University of Tehran, Tehran, Iran

2 Department of agriculture engineering, Agriculture Research Institute, Iranian Research Organization for Science and Technology, Tehran, Iran

Abstract

In today's world, the production of hospital wastes and their adverse effects such as infectious outbreaks and resistance to treatment is an important issue. Therefore, it's vital to find a new and efficient method to manage such wastes. In this study, the ability of dielectric barrier discharge (DBD) plasma to deactivate Pseudomonas aeruginosa and Staphylococcus aureus bacteria was assessed. The bacteria were treated with DBD plasma after cultivation in liquid milieu, and then dried in a sterile air stream. The results showed that for both bacteria, the number of deactivated colonies increased proportionally to the time of treatment. First, it occurred rapidly, and then the number of active colonies decreased at a slower speed. Also, increasing the plasma duty cycle in the same treatment time led to more deactivated colonies. This increase was more significant in the Pseudomonas aeruginosa bacteria, and changes for the Staphylococcus aureus was slight. 

Keywords

Main Subjects


[1] Hoveidi, H., Pari, M. A., HosseinVahidi, M. P., Koulaeian, T. (2013). Industrial waste management with application of RIAM environmental assessment: a case study on toos industrial state, Mashhad. energy environ, 4(2), 142-149
[2] Pazoki, M., Abdoli, M. A., Karbassi, A., Mehrdadi, N., Yaghmaeian, K. (2014). Attenuation of municipal landfill leachate through land treatment. Journal of environmental health science and engineering, 12(1), 12.
[3] Karbassi, A., Pazoki, M. (2015). Optimization of coagulation/flocculation for treatment of wastewater. Journal of environmental teatment techniques, 3(2), 170-174.
[4] Pazoki, M., Yavari, M. A., Noorani, M., Abbasifard, M. (2015). Identification of hazardous waste and its impact on environmental sustainable development.
[5] Pazoki, M., Parsa, M., Farhadpour, R. (2016). Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis. Journal of environmental chemical engineering, 4(4), 4426-4434.
[6] Moss, C., Isley, M. M. (2015). Sterilization: a review and update. Obstetrics and gynecology cinics, 42(4), 713-724.
[7] Omran, A. V., Sohbatzadeh, F., Siadati, S. N., Colagar, A. H., Akishev, Y., Arefi-Khonsari, F. (2017). Single channel atmospheric pressure transporting plasma and plasma stream demultiplexing: physical characterization and application to E. coli bacteria inactivation. Journal of physics D: Applied physics, 50(31), 315202.
[8] Sandle, T. (2013). Sterility, sterilisation and sterility assurance for pharmaceuticals: technology, validation and current regulations. Elsevier.
[9] O'connor, N., Cahill, O., Daniels, S., Galvin, S., Humphreys, H. (2014). Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? Journal of hospital infection, 88(2), 59-65.
[10] Colagar, A. H., Alavi, O., Motallebi, S., Sohbatzadeh, F. (2016). Decontamination of Streptococcus pyogenes and Escherichia coli from solid surfaces by singlet and triplet atmospheric pressure plasma jet arrays. Arabian journal for science and engineering, 41(6), 2139-2145.
[11] Mortazavi, S. M., Hosseinzadeh Colagar, A., Sohbatzadeh, F. (2016). The Efficiency of the Cold Argon-oxygen Plasma jet to reduce Escherichia coli and Streptococcus pyogenes from solid and liquid ambient. Iranian journal of medical microbiology, 10(3), 19-30.
[12] Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International journal of pharmaceutics, 226(1-2), 1-21.
[13] Bárdos, L., Baránková, H. (2010). Cold atmospheric plasma: Sources, processes, and applications. Thin solid films, 518(23), 6705-6713.
[14] Izard, J., Rivera, M. (Eds.). (2014). Metagenomics for microbiology. Elsevier science
[15] Quah, S. R., Cockerham, W. C. (2016). International Encyclopedia of Public Health: Elsevier Science.
[16] Choi, J. H., Han, I., Baik, H. K., Lee, M. H., Han, D. W., Park, J. C., Lim, Y. S. (2006). Analysis of sterilization effect by pulsed dielectric barrier discharge. Journal of electrostatics, 64(1), 17-22.
[17] Colagar, A. H., Sohbatzadeh, F., Mirzanejhad, S., Omran, A. V. (2010). Sterilization of Streptococcus pyogenes by afterglow dielectric barrier discharge using O2 and CO2 working gases. Biochemical engineering journal, 51(3), 189-193.
[18] Sohbatzadeh, F., Colagar, A. H., Mirzanejhad, S., Mahmodi, S. (2010). E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Applied biochemistry and biotechnology, 160(7), 1978-1984.
[19] Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan, U. K., Fridman, G., Brooks, A. D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial agents and chemotherapy, 55(3), 1053-1062.
[20] Deng, S., Cheng, C., Ni, G., Meng, Y., Chen, H. (2008). Bacterial inactivation by atmospheric pressure dielectric barrier discharge plasma jet. Japanese journal of applied physics, 47(8S2), 7009.
[21] Lu, H., Patil, S., Keener, K. M., Cullen, P. J., Bourke, P. (2014). Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of applied microbiology, 116(4), 784-794.
[22] Calvo, T., Alvarez-Ordóñez, A., Prieto, M., Bernardo, A., López, M. (2017). Stress adaptation has a minor impact on the effectivity of Non-Thermal Atmospheric Plasma (NTAP) against Salmonella spp. Food research international, 102, 519-525.
[23] Verwaeren, J., Scheerlinck, K., De Baets, B. (2013). Countering the negative search bias of ant colony optimization in subset selection problems. Computers and operations research, 40(4), 931-942.
[24] Joshi, S. G., Paff, M., Friedman, G., Fridman, G., Fridman, A., Brooks, A. D. (2010). Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. American journal of infection control, 38(4), 293-301.
[25] Daeschlein, G., Scholz, S., Ahmed, R., von Woedtke, T., Haase, H., Niggemeier, M., Juenger, M. (2012). Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. Journal of hospital infection, 81(3), 177-183.