Removal of Cd(II) ions from contaminated water by a new modified magnetic chitosan nano composite

Document Type: Research Paper

Author

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST)

Abstract

Magnetic chitosan nanocomposites are one of the more recent advanced groups of adsorbents used to remove contaminants from waste water. In this research, N- Nicotinyl-N', N"-bis (Hexamethylenyl) phosphoric triamide (HE) was used as an additive to form a new nanocomposite with the structure of chitosan / 5% Fe3O4 Nps/10% HE resulting in the highly efficient removal of Cd(II) ions from an aqueous solution. Several techniques were applied to characterize the new-fabricated nanocomposite: X-ray Powder Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM). Atomic Absorption Spectroscopy (AAS) was used to measure the removal percentage of Cd(II) ions from the contaminated water samples. Results showed that 15 mg of the nanocomposite could remove Cd(II) ions with a rate of 99.9% from 20 mL of its 100 ppm aqueous solution in pH=9 with contact time of 1h. Furthermore, the same amount of the nanocomposite was applied to remove Cd(II) ions from 20 mL of a real wastewater sample with a pH=9 and the same contact time. The resulting removal rate of Cd(II) ions was 99.5%.

Keywords

Main Subjects


[1] Ali, S. M., Galal, A., Atta, N. F. (2017). Toxic heavy metal ions removal from wastewater by nano-magnetite: Case study Nile river water. Egyptian Journal of Chemistry, 60(4), 601-612.

[2] Ozdes, D., Gundogdu, A., Kemer, B., Duran, C., Senturk, H. B., Soylak, M. (2009). Removal of Pb (II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study. Journal of hazardous materials, 166(2-3), 1480-1487.

[3] Tavakoli, O., Goodarzi, V., Saeb, M. R., Mahmoodi, N. M., Borja, R. (2017). Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. Journal of hazardous materials, 334, 256-266.

[4] Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chemical research in toxicology, 24(10), 1617-1629.

[5] Genç-Fuhrman, H., Mikkelsen, P. S., Ledin, A. (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water research, 41(3), 591-602.

[6] Jha, M. K., Kumar, V., Jeong, J., Lee, J. C. (2012). Review on solvent extraction of cadmium from various solutions. Hydrometallurgy, 111, 1-9.

[7] Choi, S. Y., Nguyen, V. T., Lee, J. C., Kang, H., Pandey, B. D. (2014). Liquid–liquid extraction of Cd (II) from pure and Ni/Cd acidic chloride media using Cyanex 921: A selective treatment of hazardous leachate of spent Ni–Cd batteries. Journal of hazardous materials278, 258-266.

[8] Purkayastha, D., Mishra, U., Biswas, S. (2014). A comprehensive review on Cd (II) removal from aqueous solution. Journal of water process engineering, 2, 105-128.

[9] Bhatnagar, A., Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical engineering journal, 157(2-3), 277-296.

[10] Bhatnagar, A., Kumar, E., Sillanpää, M. (2011). Fluoride removal from water by adsorption—a review. Chemical engineering journal, 171(3), 811-840.

[11] Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—a review. Journal of hazardous materials, 263, 322-333.

[12] Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of hazardous materials, 215, 272-279.

[13] Fan, L., Luo, C., Lv, Z., Lu, F., Qiu, H. (2011). Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. Journal of hazardous materials, 194, 193-201.

[14] Wang, Y., Li, L., Luo, C., Wang, X., Duan, H. (2016). Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. International journal of biological macromolecules, 86, 505-511.

[15] Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical engineering journal, 162(2), 487-494.

[16] Qu, J. B., Shao, H. H., Jing, G. L., Huang, F. (2013). PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: preparation, characterization and cytotoxicity studies. Colloids and surfaces B: Biointerfaces, 102, 37-44.

[17] Ashokkumar, M., Sumukh, K. M., Murali, R., Narayanan, N. T., Ajayan, P. M., Thanikaivelan, P. (2012). Collagen–chitosan biocomposites produced using nanocarbons derived from goatskin waste. Carbon, 50(15), 5574-5582.

[18] Chung, E. Y., Kim, H. M., Lee, G. H., Kwak, B. K., Jung, J. S., Kuh, H. J., Lee, J. (2012). Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohydrate polymers, 90(4), 1725-1731.

[19] Lee, H. U., Song, Y. S., Suh, Y. J., Park, C., Kim, S. W. (2012). Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into chitosan bead. Journal of molecular catalysis B: Enzymatic, 81, 31-36.

[20] Das, D., Das, N. (2014). Sunlight mediated diesel degradation under saline conditions using ionic silver coated sand via nanoreduction: Use of impregnated form of thiourea modified chitosan membranes for ex situ application. Journal of hazardous materials, 278, 597-609.

[21] Reddy, D. H. K., Lee, S. M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in colloid and interface science, 201, 68-93.

[22] Pan, J., Yao, H., Li, X., Wang, B., Huo, P., Xu, W., Yan, Y. (2011). Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2, 4, 6-trichlorophenol from aqueous solutions. Journal of hazardous materials, 190(1-3), 276-284.

[23] Yan, H., Yang, L., Yang, Z., Yang, H., Li, A., Cheng, R. (2012). Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions. Journal of hazardous materials, 229, 371-380.

[24] Li, J., Zhang, Y., Shen, F., Yang, Y. (2012). Comparison of magnetic carboxymethyl chitosan nanoparticles and cation exchange resin for the efficient purification of lysine-tagged small ubiquitin-like modifier protease. Journal of chromatography B, 907, 159-162.

[25] Chauhan, N., Narang, J., Pundir, C. S. (2012). An amperometric glutathione biosensor based on chitosan–iron coated gold nanoparticles modified Pt electrode. International journal of biological macromolecules, 51(5), 879-886.

[26] Liu, L., Xiao, L., Zhu, H., Shi, X. (2012). Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchimica acta, 178(3-4), 413-419.

[27] Ma, W., Ya, F. Q., Han, M., Wang, R. (2007). Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. Journal of hazardous materials, 143(1-2), 296-302.

[28] Miretzky, P., Cirelli, A. F. (2009). Hg (II) removal from water by chitosan and chitosan derivatives: a review. Journal of hazardous materials, 167(1-3), 10-23.

[29] Liu, X., Hu, Q., Fang, Z., Zhang, X., Zhang, B. (2008). Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 25(1), 3-8.

[30] Oroujzadeh, N., Rezaei Jamalabadi, S. (2016). Fabrication of a novel magnetic nanocomposite to remove Cu (II) ions from contaminated water. Phosphorus, Sulfur, and Silicon and the related elements, 191(11-12), 1501-1503.

[31] Kim, H. R., Jang, J. W., Park, J. W. (2016). Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. Journal of hazardous materials, 317, 608-616.

[32] Monier, M., Ayad, D. M., Abdel-Latif, D. A. (2012). Adsorption of Cu (II), Cd (II) and Ni (II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. Colloids and Surfaces B: Biointerfaces, 94, 250-258.

[33] Wu, X., Hu, L. (2016). Design and synthesis of peptide conjugates of phosphoramide mustard as prodrugs activated by prostate-specific antigen. Bioorganic and medicinal chemistry, 24(12), 2697-2706.

[34] Gholivand, K., Oroujzadeh, N., Erben, M. F., Della Védova, C. O. (2009). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1, 3, 2-diazaphospholidine-2, 4, 5-triones. Polyhedron, 28(3), 541-547.

[35] Gholivand, K., Oroujzadeh, N., Afshar, F. (2010). New organotin (IV) complexes of nicotinamide, isonicotinamide and some of their novel phosphoric triamide derivatives: Syntheses, spectroscopic study and crystal structures. Journal of organometallic chemistry, 695(9), 1383-1391.

[36] Oroujzadeh, N., Gholivand, K., Jamalabadi, N. R. (2017). New carbacylamidophosphates containing nicotinamide: Synthesis, crystallography and antibacterial activity. Polyhedron, 122, 29-38.

[37] Gholivand, K., Molaei, F., Oroujzadeh, N., Mobasseri, R., Naderi-Manesh, H. (2014). Two novel Ag (I) complexes of N-nicotinyl phosphoric triamide derivatives: Synthesis, X-ray crystal structure and in vitro antibacterial and cytotoxicity studies. Inorganica chimica acta, 423, 107-116.

[38] Oroujzadeh, N., Rezaei Jamalabadi, S. (2016). New nanocomposite of N-nicotinyl, N′, N ″-bis (tert-butyl) phosphorictriamide based on chitosan: Fabrication and antibacterial investigation. Phosphorus, Sulfur, and Silicon and the related elements, 191(11-12), 1572-1573.

[39] Gholivand, K., Oroujzadeh, N., Shariatinia, Z. (2010). N-2, 4-dichlorobenzoyl phosphoric triamides: Synthesis, spectroscopic and X-ray crystallography studies. Journal of chemical sciences, 122(4), 549-559.

[40] Gholivand, K., Oroujzadeh, N., Shariatinia, Z. (2010). New phosphoric triamides: Chlorine substituents effects and polymorphism. Heteroatom chemistry: An international journal of main group elements, 21(3), 168-180.

[41] Oroujzadeh, N., Gholivand, K. (2016). New organophosphorus compounds containing nicotinamide: Synthesis, structure and DFT calculations. Journal of the Iranian chemical society, 13(5), 847-857.

[42] Gholivand, K., Oroujzadeh, N., Rajabi, M. (2012). New N-nicotinyl and N-isonicotinyl, N′, N ″-diaryl phosphorictriamides with new Er (III) complex: synthesis, spectroscopic study and crystal structures. Journal of the Iranian chemical society, 9(6), 865-876.

[43] Monier, M., Ayad, D. M., Wei, Y., Sarhan, A. A. (2010). Adsorption of Cu (II), Co (II), and Ni (II) ions by modified magnetic chitosan chelating resin. Journal of hazardous materials, 177(1-3), 962-970.

[44] Loh, K. S., Lee, Y., Musa, A., Salmah, A., Zamri, I. (2008). Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2, 4-dichlorophenoxyacetic acid. Sensors, 8(9), 5775-5791.

[45] Oroujzadeh, N. (2017). New Chitosan/Ag/ Carbacylamidophosphate nanocomposites: Preparation and antibacterial study. Advances in environmental technology, 3, 151-157.

[46] Wang, N., Xu, X., Li, H., Zhai, J., Yuan, L., Zhang, K., Yu, H. (2016). Preparation and application of a xanthate-modified thiourea chitosan sponge for the removal of Pb (II) from aqueous solutions. Industrial and engineering chemistry research, 55(17), 4960-4968.

[47] Monier, M., Ayad, D. M., Abdel-Latif, D. A. (2012). Adsorption of Cu (II), Cd (II) and Ni (II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. Colloids and Surfaces B: Biointerfaces, 94, 250-258.

[48] Yang, G., Tang, L., Lei, X., Zeng, G., Cai, Y., Wei, X., Zhang, Y. (2014). Cd (II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Applied surface science, 292, 710-716.