[1] Ahmed, S., Rasul, M. G., Brown, R., Hashib, M. A. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of environmental management, 92(3), 311-330.
[2] Collazzo, G. C., Foletto, E. L., Jahn, S. L., Villetti, M. A. (2012). Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. Journal of environmental management, 98, 107-111.
[3] Meier, W. M. (1996). Atlas of zeolite structure types. Zeolites, Special issue, 17.
[4] Stolz, J., Yang, P., Armbruster, T. (2000). Cd-exchanged heulandite: symmetry lowering and site preference. Microporous and Mesoporous Materials, 37(1-2), 233-242.
[5] Mohammadi, A., Aliakbarzadeh Karimi, A. (2017). Methylene blue removal using surface-modified TiO2 nanoparticles: A comparative study on adsorption and photocatalytic degradation. Journal of Water and Environmental nanotechnology, 2(2), 118-128.
[6] Moslehyani, A., Ismail, A. F., Othman, M. H. D., Matsuura, T. (2015). Hydrocarbon degradation and separation of bilge water via a novel TiO2-HNTs/PVDF-based photocatalytic membrane reactor (PMR). RSC Advances, 5(19), 14147-14155.
[7] Hairom, N. H. H., Mohammad, A. W., Kadhum, A. A. H. (2015). Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes. Chemical engineering journal, 260, 907-915.
[8] Shiokawa, K., Ito, M., Itabashi, K. (1989). Crystal structure of synthetic mordenites. Zeolites, 9(3), 170-176.
[9] Balou, J., Khalilzadeh, M. A., Zareyee, D. (2017). KF/Nano-clinoptilolite Catalyzed Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate. Catalysis letters, 147(10), 2612-2618.
[10] Jury, F. A., Polaert, I., Estel, L., Pierella, L. B. (2014). Enhancement of synthesis of ZSM-11 zeolite by microwave irradiation. Microporous and mesoporous materials, 198, 22-28.
[11] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
[12] Yamanaka, M., Hara, K., Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis.Applied and environmental microbiology., 71(11), 7589-7593.
[13] Mahmoodi, P., Hosseinzadeh Borazjani, H., Farhadian, M., Solaimany Nazar, A. R. (2015). Remediation of contaminated water from nitrate and diazinon by nanofiltration process. Desalination and water treatment, 53(11), 2948-2953.
[14] Rivera-Garza, M., Olguın, M. T., Garcıa-Sosa, I., Alcántara, D., Rodrıguez-Fuentes, G. (2000). Silver supported on natural Mexican zeolite as an antibacterial material. Microporous and mesoporous materials, 39(3), 431-444.
[15] Kusvuran, E., Yildirim, D., Mavruk, F., Ceyhan, M. (2012). Removal of chloropyrifos ethyl, tetradifon and chlorothalonil pesticide residues from citrus by using ozone. Journal of hazardous materials, 241, 287-300.
[16] Sheng, J., Tong, H., Xu, H., Tang, C. (2016). Preparation and Photocatalytic Activity of SnO2@ TiO2 Core–Shell Composites Modified by Ag. Catalysis surveys from Asia, 20(3), 167-172.
[17] Krishnani, K. K., Zhang, Y., Xiong, L., Yan, Y., Boopathy, R., Mulchandani, A. (2012). Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresource technology, 117, 86-91.
[18] Nezamzadeh-Ejhieh, A., Khorsandi, S. (2014). Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. Journal of industrial and engineering chemistry, 20(3), 937-946.
[19] Cheng, H. H., Hsieh, C. C., Tsai, C. H. (2012). Antibacterial and regenerated characteristics of Ag-zeolite for removing bioaerosols in indoor environment. Aerosol and air quality research, 12(3), 409-419.
[20] Zhong, S., Zhang, F., Yu, B., Zhao, P., Jia, L., Zhang, S. (2016). Synthesis of PVP-Bi2 WO6 photocatalyst and degradation of tetracycline hydrochloride under visible light. Journal of materials science: Materials in electronics, 27(3), 3011-3020.
[21] Ghorai, T. K., Biswas, N. (2013). Photodegradation of rhodamine 6G in aqueous solution via SrCrO4 and TiO2 nano-sphere mixed oxides. Journal of materials research and technology, 2(1), 10-17.
[22] Saadati, F., Keramati, N., Ghazi, M. M. (2016). Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review. Critical reviews in environmental science and technology, 46(8), 757-782.
[23] Keramati, N., Nasernejad, B., Fallah, N. (2014). Synthesis of N-TiO2: stability and visible light activity for aqueous styrene degradation. Journal of dispersion science and technology, 35(10), 1476-1482.
[24] Nakaoka, Y., Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K. (2010). Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2. Desalination and water treatment, 13(1-3), 427-436.
[25] Martínez, C. M. C. L., Fernández, M. I., Santaballa, J. A., Faria, J. (2011). Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes–anatase composites. Applied catalysis B: Environmental, 102(3-4), 563-571.
[26] Lin, H. Y., Shih, C. Y. (2012). Efficient one-pot microwave-assisted hydrothermal synthesis of Nitrogen-doped TiO2 for hydrogen production by photocatalytic water splitting. catalysis surveys from Asia, 16(4), 231-239.
[27] Daneshvar, N., Aber, S., Dorraji, M. S., Khataee, A. R., Rasoulifard, M. H. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and purification technology, 58(1), 91-98.
[28] Gaya, U. I., Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of photochemistry and photobiology C: Photochemistry reviews, 9(1), 1-12.
[29] Sakkas, V. A., Calza, P., Vlachou, A. D., Medana, C., Minero, C., Albanis, T. (2011). Photocatalytic transformation of flufenacet over TiO2 aqueous suspensions: Identification of intermediates and the mechanism involved. Applied catalysis B: Environmental, 110, 238-250.