Preparation and characterization of MWCNT-COOH/PVC ultrafiltration membranes to use in water treatment

Document Type: Research Paper


1 Membrane Technology Research Center, Sahand University of Technology, Tabriz, Iran.

2 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

3 Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.


Polyvinyl chloride (PVC) membranes containing pristine and modified multiwall carbon nanotube (MWCNT) were prepared and characterized. MWCNT was modified in order to achieve well-dispersion within the membranes. The results of FTIR analysis revealed that MWCNT was successfully carboxylated. The FESEM images indicated that the number of pores on the surface of membranes increased at the presence of pristine and modified MWCNT and the pore size distribution curves shifted towards smaller pores. The hydrophilicity, pure water flux, tensile strength and abrasion resistance of the membranes increased with increasing the content of MWCNT and COOH-MWCNT up to 0.3 wt. % and then decreased due to the agglomeration of nanotubes. Nevertheless, at the same content of nanotubes, COOH-MWCNT had more effect than MWCNT. The performance of the membranes was studied by filtration of humic acid (HA) solution and the results showed that HA rejection reached a peak of 96.88% for 0.3 wt. % PVC/MWCNT-COOH nanocomposite membrane. Finally, it was found that the antifouling properties of the membranes increased with increasing nanotube content, especially COOH-MWCNT. 


Main Subjects

[1]Li, C., Cabassud, C., Guigui, C. (2015). Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants: a review. Desalination and water treatment, 55(4), 845-858.

[2] Maqbool, T., Khan, S. J., Lee, C. H. (2014). Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor. Bioresource technology, 172, 391-395.

[3] Chakraborty, S., Drioli, E., Giorno, L. (2012). Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams. Biomass and bioenergy, 46, 574-583.

[4] Tang, B., Yu, C., Bin, L., Zhao, Y., Feng, X., Huang, S., Chen, Q. (2016). Essential factors of an integrated moving bed biofilm reactor–membrane bioreactor: Adhesion characteristics and microbial community of the biofilm. Bioresource technology, 211, 574-583.

[5] Ghaemi, N., Madaeni, S. S., Alizadeh, A., Daraei, P., Vatanpour, V., Falsafi, M. (2012). Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: characterization and performance in rejection of pesticides. Desalination, 290, 99-106.

[6] Ng, L. Y., Mohammad, A. W., Leo, C. P., Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination, 308, 15-33.

[7] Xu, J., & Xu, Z. L. (2002). Poly (vinyl chloride)(PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent. Journal of membrane science, 208(1-2), 203-212.

[8] Zhang, X., Chen, Y., Konsowa, A. H., Zhu, X., Crittenden, J. C. (2009). Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment. Separation and purification technology, 70(1), 71-78.

[9] Jafarzadeh, Y., Yegani, R., Sedaghat, M. (2015). Preparation, characterization and fouling analysis of ZnO/polyethylene hybrid membranes for collagen separation. Chemical engineering research and design, 94, 417-427.

[10] Behboudi, A., Jafarzadeh, Y., Yegani, R. (2017). Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. Journal of membrane science, 534, 18-24.

[11] Behboudi, A., Jafarzadeh, Y., Yegani, R. (2016). Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chemical engineering research and design, 114, 96-107.

[12] Rabiee, H., Vatanpour, V., Farahani, M. H. D. A., Zarrabi, H. (2015). Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separation and purification technology, 156, 299-310.

[13] Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., Chen, Y. (2017). Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. Journal of membrane science, 529, 170-184.

[14] Yin, J., Zhu, G., Deng, B. (2013). Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of membrane science, 437, 237-248.

[15] Byrne, M. T., Gun'ko, Y. K. (2010). Recent advances in research on carbon nanotube–polymer composites. Advanced materials, 22(15), 1672-1688.

[16] Gaur, M. S., Singh, R., Tiwari, R. K. (2014). Study of structural morphology, thermal degradation and surface charge decay in PU+ PSF+ CNTs polymer hybrid nanocomposite. Journal of electrostatics, 72(4), 242-251.

[17] Pekker, S., Salvetat, J. P., Jakab, E., Bonard, J. M., Forro, L. (2001). Hydrogenation of carbon nanotubes and graphite in liquid ammonia. The journal of physical chemistry B, 105(33), 7938-7943.

[18] Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R., Jellen, F. (2001). Sidewall functionalization of carbon nanotubes. Angewandte chemie international edition, 40(21), 4002-4005.

[19] Mickelson, E. T., Huffman, C. B., Rinzler, A. G., Smalley, R. E., Hauge, R. H., Margrave, J. L. (1998). Fluorination of single-wall carbon nanotubes. Chemical physics letters, 296(1-2), 188-194.

[20] Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M., Hirsch, A. (2002). Organic functionalization of carbon nanotubes. Journal of the American chemical society, 124(5), 760-761

[21] Ying, Y., Saini, R. K., Liang, F., Sadana, A. K., Billups, W. E. (2003). Functionalization of carbon nanotubes by free radicals. Organic letters, 5(9), 1471-1473.

[22] Bahr, J. L., Yang, J., Kosynkin, D. V., Bronikowski, M. J., Smalley, R. E., Tour, J. M. (2001). Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. Journal of the American chemical society, 123(27), 6536-6542.

[23] Suhartono, J., Tizaoui, C. (2015). Polyvinylidene fluoride membranes impregnated at optimised content of pristine and functionalised multi-walled carbon nanotubes for improved water permeation, solute rejection and mechanical properties. Separation and purification technology, 154, 290-300.

[24] Daraei, P., Madaeni, S. S., Ghaemi, N., Monfared, H. A., Khadivi, M. A. (2013). Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: comparison of MWCNT and PAA modified MWCNT. Separation and purification technology, 104, 32-44.

[25] Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., Astinchap, B. (2011). Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. Journal of membrane science, 375(1-2), 284-294.

[26] Lai, C. Y., Groth, A., Gray, S., Duke, M. (2014). Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment. Journal of membrane science, 449, 146-157.

[27] Safarpour, M., Khataee, A., Vatanpour, V. (2015). Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Separation and purification technology, 140, 32-42.

[28] Palacio, L., Calvo, J. I., Prádanos, P., Hernández, A., Väisänen, P., Nyström, M. (1999). Contact angles and external protein adsorption onto UF membranes. Journal of membrane science, 152(2), 189-201.

[29] Zhao, Y., Xu, Z., Shan, M., Min, C., Zhou, B., Li, Y., Qian, X. (2013). Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Separation and purification technology, 103, 78-83.

[30] Esfahani, M. R., Tyler, J. L., Stretz, H. A., Wells, M. J. (2015). Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination, 372, 47-56.

[31] Celik, E., Park, H., Choi, H., Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water research, 45(1), 274-282.

[32] Celik, E., Liu, L., Choi, H. (2011). Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. water research, 45(16), 5287-5294.

[33] Jung, G., Kim, H. I. (2014). Synthesis and photocatalytic performance of PVA/TiO2/graphene‐MWCNT nanocomposites for dye removal. Journal of applied polymer science, 131(17),

[34] Etemadi, H., Yegani, R., Babaeipour, V. (2017). Performance evaluation and antifouling analyses of cellulose acetate/nanodiamond nanocomposite membranes in water treatment. Journal of applied polymer science, 134(21),

[35] Yuliwati, E., Ismail, A. F. (2011). Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination, 273(1), 226-234.

[36] Yang, Y. N., Jun, W., Qing-zhu, Z., Xue-si, C., Hui-xuan, Z. (2008). The research of rheology and thermodynamics of organic–inorganic hybrid membrane during the membrane formation. Journal of membrane science, 311(1-2), 200-207.

[37] Khan, R., Khare, P., Baruah, B. P., Hazarika, A. K., Dey, N. C. (2011). Spectroscopic, kinetic studies of polyaniline-flyash composite. Advances in chemical engineering and sciences, 1, 37-44.

[38] Zhao, W., Su, Y., Li, C., Shi, Q., Ning, X., Jiang, Z. (2008). Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of membrane science, 318(1-2), 405-412.

[39] Kimmerle, K., Strathmann, H. (1990). Analysis of the structure-determining process of phase inversion membranes. Desalination, 79(2-3), 283-302.

[40] Fontananova, E., Jansen, J. C., Cristiano, A., Curcio, E., Drioli, E. (2006). Effect of additives in the casting solution on the formation of PVDF membranes. Desalination, 192(1-3), 190-197.

[41] Arsuaga, J. M., Sotto, A., Del Rosario, G., Martínez, A., Molina, S., Teli, S. B., de Abajo, J. (2013). Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. Journal of membrane science, 428, 131-141.

[42] Wang, W. Y., Shi, J. Y., Wang, J. L., Li, Y. L., Gao, N. N., Liu, Z. X., Lian, W. T. (2015). Preparation and characterization of PEG-g-MWCNTs/PSf nano-hybrid membranes with hydrophilicity and antifouling properties. RSC Advances, 5(103), 84746-84753.

[43] Sun, M., Su, Y., Mu, C., Jiang, Z. (2009). Improved antifouling property of PES ultrafiltration membranes using additive of silica− PVP nanocomposite. Industrial and engineering chemistry research, 49(2), 790-796.

[44] Amy, G. L. (2001). NOM rejection by, and fouling of, NF and UF membranes. American water works association.

[45] Heo, J., Kim, H., Her, N., Lee, S., Park, Y. G., Yoon, Y. (2012). Natural organic matter removal in single-walled carbon nanotubes–ultrafiltration membrane systems. Desalination, 298, 75-84.

[46] Akbari, A., Yegani, R., Pourabbas, B., Behboudi, A. (2016). Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of Humic acid. Chemical engineering research and design, 109, 282-296.

[47] Fu, X., Maruyama, T., Sotani, T., Matsuyama, H. (2008). Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes. Journal of membrane science, 320(1-2), 483-491.