New Chitosan/Ag/Carbacylamidophosphate nanocomposites: Preparation and antibacterial study

Document Type: Research Paper

Author

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST)

Abstract

Two new Chitosan-based nanocomposite films were prepared: Chitosan /7% Ag nanoparticles (NPs) (NC1) and Chitosan/7% Ag NPs/5%Carbacylamidophosphate(NC2), in which the carbacylamidophosphate derivitive is N-Nicotinyl-N′,N″- bis(hexamethylenyl) phosphorictriamide (NHE) with the formula: C5H4NC(O)NHP(O)(NC6H12)2. X-ray Powder Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDS) methods were used to characterize and confirm the prepared frameworkrs. XRD graph of the two nanocomposites showed all the characteristic peaks of NHE, Ag NPs, and chitosan, indicating the fact that the preparing process has not made any changes in the phases of the nanocomposites components. All the SEM micrographs and EDS analysis results also confirmed the desired structures. To study the effect of the additive NHE on the antibacterial activity of the films, in vitro antibacterial tests were done on the prepared nanocomposites against two Gram-positive (Staphylococcus aureus, Bacillus cereus) and two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) in Brain-Heart Infusion(BHI) medium. Results showed that the antibacterial effects of the nanocomposite containing NHE on each of the four bacteria is stronger than those for the nanocomposite without NHE.

Keywords

Main Subjects


[1] Craun, G. F. (Ed.). (1986). Waterborne diseases in the United States. CRC PressI Llc.

[2] Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews, 10(3), 505-520.

[3] U.S. Centers for Disease Control and Prevention (2016). Staphylococcal Food Poisoning.

[4] Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal Escherichia coli. Nature reviews. Microbiology, 8(3), 207.

[5] Food Standards Agency (2016). Reducing the risk from E. coli 0157 – controlling cross-contamination. United Kingdom.

[6] Ryan, K. J., & Ray, C. G. (2004). Medical microbiology. McGraw Hill, 4, 370.

[7] Sanford, C. A., Jong, E. C., & Pottinger, P. S. (2016). The Travel and Tropical Medicine Manual E-Book. Elsevier Health Sciences.

[8] Asaeda, G., Caicedow, G., & Swanson, C. (2005). Fried rice syndrome. JEMS: a journal of emergency medical services, 30(12), 30-32.

[9] Todar, K. (2013). Online Textbook of Bacteriology. 2011. Bacterial Endotoxin.‏

[10] Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4(1), 51.

[11] Sanpui, P., Murugadoss, A., Prasad, P. D., Ghosh, S. S., & Chattopadhyay, A. (2008). The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. International journal of food microbiology, 124(2), 142-146.

[12] Pinto, R. J., Fernandes, S. C., Freire, C. S., Sadocco, P., Causio, J., Neto, C. P., & Trindade, T. (2012). Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research, 348, 77-83.

[13] Hu, L., Wu, X., Han, J., Chen, L., Vass, S. O., Browne, P., Hall, B.S., Bot, C., Gobalakrishnapillai, V., Searle, P.F., Knox, R. J. (2011). Synthesis and structure–activity relationships of nitrobenzyl phosphoramide mustards as nitroreductase-activated prodrugs. Bioorganic & medicinal chemistry letters, 21(13), 3986-3991.

[14] Wang, B. L., Liu, X. S., Ji, Y., Ren, K. F., & Ji, J. (2012). Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate polymers, 90(1), 8-15.

[15] Ueno H., Mori, T., Fujinaga, T. (2001). Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews, 52,105–15.

[16] Jabeen, S., Kausar, A., Saeed, S., Muhammad, B., & Gul, S. (2016). Poly (vinyl alcohol) and chitosan blend cross-linked with bis phenol-F-diglycidyl ether: mechanical, thermal and water absorption investigation. Journal of the Chinese Advanced Materials Society, 4(3), 211-227.

[17] Kast, C. E., Frick, W., Losert, U., & Bernkop-Schnürch, A. (2003). Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering. International journal of pharmaceutics, 256(1), 183-189.

[18] Yoo, H. S., Lee, J. E., Chung, H., Kwon, I. C., & Jeong, S. Y. (2005). Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. Journal of Controlled Release, 103(1), 235-243.

[19] Park, J. H., Saravanakumar, G., Kim, K., & Kwon, I. C. (2010). Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced drug delivery reviews, 62(1), 28-41.

[20] Chan, P., Kurisawa, M., Chung, J. E., & Yang, Y. Y. (2007). Synthesis and characterization of chitosan-g-poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 28(3), 540-549.

[21] Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, V. A., Hurdle, J. G., Carson, E. I., ... & Lee, R. E. (2008). Novel Acyl Phosphate Mimics that Target PlsY, an Essential Acyltransferase in Gram‐Positive Bacteria. ChemMedChem, 3(12), 1936-1945.

[22] Oroujzadeh, N., Gholivand, K., & Shariatinia, Z. (2013). The Spectroscopy and Structure of New 1, 3, 2-Diazaphospholes and 1, 3, 2-Diazaphosphorinanes. Phosphorus, Sulfur, and Silicon and the Related Elements, 188(1-3), 183-191.

[23] Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M., & Whittingham, W. (2002). A new synthesis of phosphoramidates: inhibitors of the key bacterial enzyme aspartate semi-aldehyde dehydrogenase. Chemical Communications, (18), 2004-2005.

[24] Gholivand, K., Oroujzadeh, N., & Shariatinia, Z. (2010). New phosphoric triamides: Chlorine substituents effects and polymorphism. Heteroatom Chemistry, 21(3), 168-180.

[25] Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V., & Amirkhanov, V. M. (2009). Synthesis and investigations of mixed-ligand lanthanide complexes with N, N′-dipyrrolidine-N′′-trichloracetylphosphortriamide, dimethyl-N-trichloracetylamidophosphate, 1, 10-phenanthroline and 2, 2′-bipyrimidine. Polyhedron, 28(17), 3731-3738.

[26] Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A., Gawryszewska, P., & Jerzykiewicz, L. B. (2014). Powerful new ligand systems: carbacylamidophosphates (CAPh) and sulfonylamidophosphates (SAPh). Chapter, 7, 199-248.

[27] Gholivand, K., Oroujzadeh, N., & Shariatinia, Z. (2010). N-2, 4-dichlorobenzoyl phosphoric triamides: Synthesis, spectroscopic and X-ray crystallography studies. Journal of chemical sciences, 122(4), 549-559.

[28] Litsis, O. O., Ovchynnikov, V. A., Shishkina, S. V., Sliva, T. Y., & Amirkhanov, V. M. (2013). Dinuclear 3D metal complexes based on a carbacylamidophosphate ligand: redetermination of the ligand crystal structure. Transition Metal Chemistry, 38(4), 473-479.

[29] Amirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Sliva, T. Y., Penkova, L. V., Yushchenko, T., ... & Amirkhanov, V. M. (2014). Heterobinuclear Zn–Ln and Ni–Ln Complexes with Schiff‐Base and Carbacylamidophosphate Ligands: Synthesis, Crystal Structures, and Catalytic Activity. European Journal of Inorganic Chemistry, 23, 3720-3730.

[30] Gubina, K. E., Maslov, O. A., Trush, E. A., Trush, V. A., Ovchynnikov, V. A., Shishkina, S. V., Amirkhanov, V. M. (2009). Novel heteroligand complexes of Co (II), Cu (II), Ni (II) and Mn (II) formed by 2, 2′-dipyridyl or 1, 10-phenanthroline and phosphortriamide ligands: Synthesis and structure. Polyhedron, 28(13), 2661-2666.

[31] Gholivand, K., Oroujzadeh, N., Erben, M. F., & Della Védova, C. O. (2009). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1, 3, 2-diazaphospholidine-2, 4, 5-triones. Polyhedron, 28(3), 541-547.

[32] Schultz, C. (2003). Prodrugs of biologically active phosphate esters. Bioorganic & medicinal chemistry, 11(6), 885-898.

[33] Wu, L. Y., Do, J. C., Kazak, M., Page, H., Toriyabe, Y., Anderson, M. O., & Berkman, C. E. (2008). Phosphoramidate derivatives of hydroxysteroids as inhibitors of prostate-specific membrane antigen. Bioorganic & medicinal chemistry letters, 18(1), 281-284.

[34] Venkatachalam, T. K., Sarquis, M., Qazi, S., & Uckun, F. M. (2006). Effect of alkyl groups on the cellular hydrolysis of stavudine phosphoramidates. Bioorganic & medicinal chemistry, 14(18), 6420-6433.

[35] Gholivand, K., Farshadian, S., Hosseini, Z., Khajeh, K., & Akbari, N. (2010). Two novel diorganotin phosphonic diamides: syntheses, crystal structures, spectral properties and in vitro antibacterial studies. Applied Organometallic Chemistry, 24(10), 700-707.

[36] Gholivand, K., Dorosti, N., Ghaziany, F., Mirshahi, M., & Sarikhani, S. (2012). N‐phosphinyl ureas: Synthesis, characterization, X‐ray structure, and in vitro evaluation of antitumor activity. Heteroatom Chemistry, 23(1), 74-83.

[37] Gholivand, K., Alizadehgan, A. M., Mojahed, F., Dehghan, G., Mohammadirad, A., & Abdollahi, M. (2008). Some new carbacylamidophosphates as inhibitors of acetylcholinesterase and butyrylcholinesterase. Zeitschrift für Naturforschung C, 63(3-4), 241-250.

[38] Gholivand, K., Shariatinia, Z., Khajeh, K., & Naderimanesh, H. (2006). Syntheses and spectroscopic characterization of some phosphoramidates as reversible inhibitors of human acetylcholinesterase and determination of their potency. Journal of enzyme inhibition and medicinal chemistry, 21(1), 31-35.

[39] Oroujzadeh, N., Gholivand, K., & Jamalabadi, N. R. (2017). New carbacylamidophosphates containing nicotinamide: Synthesis, crystallography and antibacterial activity. Polyhedron, 122, 29-38.

[40] Caswell, K. K., Bender, C. M., & Murphy, C. J. (2003). Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 3(5), 667-669.

[41] Oroujzadeh, N., & Rezaei Jamalabadi, S. (2016). New nanocomposite of N-nicotinyl, N′, N ″-bis (tert-butyl) phosphorictriamide based on chitosan: Fabrication and antibacterial investigation. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(11-12), 1572-1573.

[42] Srivastava, R., Tiwari, D. K., & Dutta, P. K. (2011). 4-(Ethoxycarbonyl) phenyl-1-amino-oxobutanoic acid–chitosan complex as a new matrix for silver nanocomposite film: Preparation, characterization and antibacterial activity. International journal of biological macromolecules, 49(5), 863-870.

[43] Wang, X., Du, Y., Yang, J., Wang, X., Shi, X., & Hu, Y. (2006). Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer, 47(19), 6738-6744.