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 The amount of pollutant gases in the atmosphere has reached a critical state due to 
an increase in industrial development and the rapid growth of automobile industries 
that use fossil fuels. The combustion of fossil fuels produces harmful gases such as 
carbon dioxide, nitrogen monoxide (NO), soot, particulate matter (PM), etc. The use 
of Dimethyl Ether (DME) biofuel in diesel engines or other combustion processes 
have been highly regarded by researchers. Studies show that the use of pure DME in 
automotive engines will be possible in the near future. The present work evaluated 
the environmental and performance effects of changing the injection strategy (time 
and temperature), piston bowl geometry, and exhaust gas recirculation (EGR) 
composition for a DME-burning engine. The modification of piston bowl parameters 
and engine simulation were numerically performed by using AVL fire CFD code. For 
model validation, the calculated mean pressure and rate of heat released (RHR) were 
compared to the experimental data and the results showed a good agreement (under 
a 70% load and 1200-rpm engine speed). It was found that retarding injection timing 
(reduction in in-cylinder temperature, consequently) caused a reduction in NO 
emissions and increased soot formation, reciprocally; this occurred because of a 
reduction in temperature and a lower soot oxidation in the combustion chamber. It 
became clear that 3 deg before top dead center (BTDC) was the appropriate injection 
timing for the DME-burning heavy duty diesel engine running under 1200 rpm. Also, 
the parametrical modification of the piston bowl geometry and the simultaneous 
decrease of Tm (piston bowl depth) and R3 (bowl inner radius) lengths were 
associated with lower exhaust NO emissions. For the perfect utilization of DME fuel 
in an HD diesel engine, the suggested proper lengths of Tm and R3 were 0.008 and 
0.0079 m, respectively. Furthermore, various EGR compositions for the reduction of 
exhaust NO were investigated. The simulation results showed that a 0.2 EGR 
composition led to a reduction in the exhaust NO by 37%. 
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1. Introduction 

The rising concentration of pollutants in the environment 
have adverse effects on human health. The increase in 
greenhouse gases poses a new crisis for mankind, which is 
known as rising global temperature. Researchers have 

proposed biological fuels as clean and environmentally 
friendly fuels. Therefore, the use of biofuels in diesel 
engines in pure or blended form have been widely 
investigated. The use of clean fuels (and changing 
combustion chamber parameters) to reduce greenhouse 
gases in automobiles, rockets and power generation have 

http://aest.irost.ir/
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been accompanied with positive effects [1-6]. There are 
several ways to enhance biofuels production [7-11]. 
Biofuels are very diverse. Investigations [1] show that taking 
advantage of bio-butanol fuel blended with conventional 
diesel leads to lower NO and soot emissions. In a dual fuel 
engine, speed has significant effects on emissions and an 
optimal injection timing for this mixed fuel has been 
presented [1,2,4]. The increasing use of hydrogen as a 
supplement gaseous fuel for diesel through the intake valve 
affects exhaust emissions [3,12,13,14]. Pollutant gases from 
diesel engines have a relationship with the piston bowl 
geometry; the improvement of the bowl size has a 
beneficial impact in terms of exhaust emissions and engine 
performance. Therefore, the optimization and modification 
of the piston bowl geometry, especially piston bowl depth, 
is effective for the reduction of exhaust emissions [5]. A 
change in the injection timing or pattern of fuel in the 
combustion chamber may reduce exhaust emissions [15-
18]. Hydrogen-diesel (blended fuel) has been 
experimentally examined in order to determine the PM 
emission of a diesel engine under different loads and 
speeds; the results showed that load and speed are the 
most effective parameters (in terms of environmental 
effects) [19]. In order to simulate the diesel engine and 
construct models, various CFD software can be utilized, e.g., 
AVL FIRE and KIVA. For validation of AVL Fire software, a 
single-cylinder engine has been simulated and compared to 
the experimental data; the results gave an acceptable 
agreement [20]. EGR is a widely adopted technique that 
decreases exhaust NO emissions. This includes recirculating 
a controllable ratio of the engine's tailpipe back to the in-
cylinder through the intake valve. A valve is utilized to 
control the flow rate, and the EGR pipe can be closed. This 
technique has remarkable effects on NO emissions. For this 
reason, studies on various engines examined the influence 
of using EGR rates and the appropriate EGR rates for diesel 
engines have been proposed [21-25]. In addition, the 
increase in induction of swirl in various small piston bowls 
led to a reduction in some tailpipe emissions with increasing 
air-fuel mixing [26]. Investigations show that using a 
biodiesel fuel or DME in compression ignition engines can 
increase the exergy efficiency [27-28]. The present work 
studied the environmental effects of using DME biofuel in 
the combustion chamber of a compression ignition engine.  
Initially, for pure diesel fuel, validation of numerical 
simulation was carried out under a 70% load and a 1200-
rpm engine speed. Subsequently, the obtained results of 
this simulation were developed for DME biofuel. The 
present research investigated injection timing, injection 
temperature, piston bowl depth, and EGR composition for a 
DME-burning engine. Firstly, four injection timings (for pure 
DME) before top dead center (BTDC) were examined to 
choose the best injection timing at a constant speed of 1200 
rpm. It is acknowledged that dimension modification of the 
piston bowl may facilitate reaching the optimal 

environmental condition. For this reason, piston bowl depth 
and R3 length have been further investigated. Tm is the 
piston bowl depth and its length is very effective. R3 is the 
inner radius parameter of the piston bowl. Increasing the 
length of this parameter causes enhancement of the piston 
bowl volume. In studies on a ISM 370 diesel engine, the EGR 
System has not been examined [3,12]. The influence of EGR 
system on NO emission were investigated with different 
compositions (0, 0.11, 0.15, 0.2, and 0.8). It was predicted 
that the EGR system would reduce exhaust NO. However, 
exhaust gases such as soot, CO2, etc. were also affected by 
exhaust gas recirculation. The computational domain was 
commenced at IVC (570 deg crank angle(CA)).         

2. Simulation 

 An ISM 370 diesel engine was selected to study the effects 
of DME biofuel as an alternative to diesel fuel. The utilized 
engine characteristics are listed in Table 1. Various 
parameters were selected for conducting the simulation 
including turbulence model and mechanism of pollutant 
gases formation [29-30]. K-zeta-f as the preferable model 
for turbulence and turbulent wall heat transfer modeling 
was employed [31]. This model can be utilized for including 
grids with unstable boundaries and compressed flows. The 
coherent flame (ECFM-3Z) model distinguishes between 
three major regimes relevant in the diesel combustion 
process:  auto ignition, premixed flare, and non-premixed 
[32]. Furthermore, the extended Zeldovich (NO) and Lund 
flamelet models (soot) for emissions have been considered. 
The Wave Breakup (which is utilized for atomization 
modeling of producing droplets) [33] and Dukowicz 
evaporation (for purification of the droplets) [34] 
submodels were employed for modeling spray process. 

Table 1. Specifications of the direct injection diesel engine 

Cummins ISM 370 Engine model 

10.8 L Displacement 

0.125 m Bore  

0.147m Stroke  

Inline Engine layout  
6 Number of cylinders 

4 Number of injection holes 

To ensure a lack of relationship between the simulation 
results and the mesh number, a sensitivity analysis was 
performed (below 1 percent error). The results showed that 
a change in the number of meshes above 70000 did not 
impact the results and the curves were similar, 
meticulously. The results obtained from mesh analysis can 
be observed in Figure 2. 

3. Results and discussion 

3.1. Validation  

Validation of the modeled engine was performed under a 
70% load and 1200-rpm engine speed. The initial scheme 
was designed as in Figure 1. For creating and stabilizing this 
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condition (70% load and 1200 rpm), a computational 
domain rate was calculated at about 35mg [12]. The HRR 
and mean pressure graphs obtained by numerical 
simulation was compared to the experimental data [12]. 
Figure 2 shows that the predicted pressure traces, as a 
function of crank angle, had a good agreement with the 
experimental results and the total error (with taking 21 data 
from 680 to 780 crank angle) was calculated to be less than 
3%. 5 an error below 5% for the pressure curve is acceptable 
[5]. As can be seen in Figure 2, computational errors from 
730 to 740 for the crank angles are larger than other angles. 
The errors were created because of some indeterminate 
input parameters. The estimation of input parameters such 
as inlet pressure, injection timing, etc. led to higher 
computational errors.  

 

Fig. 1. Baseline Piston bowl geometry at TDC 

 

Fig. 2. Comparison of the in-cylinder pressure between 
experimental and simulation results (start of injection (SOI)= 1.5 
deg BTDC) 

Figure 3 shows the heat release rate distribution. In this 
case, simulation errors were higher than experimental 
results. Without considering heat transfer, radiation 
energy, latent heat of vaporization, etc., computational 
errors were inevitable. In similar works, this subject has 

been confirmed [2,14]. The air motion in the combustion 
chamber before the injection of the fuel was very significant 
to meet an appropriate air-fuel mixture. This case justifies 
the fact that combustion chamber air motion has a 
fundamental role on the complete combustion in the 
combustion chamber. The velocity and TKE distribution 
were calculated and are presented in Figure 4 (at 650 oCA 
and 718 CA). As illustrated, there are strong airflows in the 
in-cylinder near the underside of the bowl and cylinder 
walls. These jet flows (which have clockwise and counter 
clockwise direction) led to more air-fuel mixing after fuel 
injection and flow turbulences increased in the compression 
cycle.  

 
Fig. 3. Comparison of the in-cylinder HRR between experimental 
and simulation results (SOI=1.5 deg BTDC)  

3.2. Environmental effects of changing fuel injection timing 
for DME biofuel 

A detailed analysis of injection timing and intermittent 
fueling of the engine was a significant step toward 
decreasing the toxic fumes and greenhouse gases. To 
investigate the performance enhancement of HD diesel 
engine fueled with pure DME, the effects of changing fuel 
injection timing were numerically analyzed. As can be seen 
in Figure. 5, maximum peak pressure occurred while 
injection timing was adjusted to 5 deg BTDC. It should be 
noted that rising peak pressure in the combustion chamber 
may lead to side effects on engine construction. 
Furthermore, pressure drop was not appropriate for the 
combustion process [5]. The accumulated heat release as a 
function of crank angles ( from 680 to 780 CAs) were 
calculated and are presented in Figure. 5. As indicated, with 
a delay in fuel injection timing into the combustion 
chamber, the amount of  evaporated fuel did not change 
much and peak pressure drop did not prevent combustion 
for the considered injection timings. 
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650 oCA 

TKE (m^2/s^2) Velocity (m/s) 

  

700 oCA 
TKE (m^2/s^2) Velocity (m/s) 

  

Fig. 4. Velocity and turbulence kinetic energy (TKE) distribution before fuel injection 

  

 

 

 

Fig. 5. Mean pressure and accumulated heat realease in various injection timings  

As can be seen in Figures 6 and 7, four injection timings 
were considered (715, 716, 717 and 719 оCAs) and for these 
injection timings, the mean mass fraction of NO and soot 
were subsequently calculated. According to Figure 6, 
changing injection timing caused a change in the NO 

emissions. Figure 7 displays an engine equipped with a DME 
fueling system; a delay in injection timing before TDC (TDC 
is 720 crank angle) led to an increase in soot formation. The 
maximum rate of soot formation occurred in 1 deg BTDC 
(this emission on the contrary produces NO). Thus, the 
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balance between soot and NO productions should be taken 
into consideration when selecting the injection timing. 
Nevertheless, 3 deg BTDC was suggested for a DME-burning 
HD diesel engine (with consideration of a balance between 
produced NO and soot).  

 

Fig. 6. Mean mass fraction of NO  as a function of crank angle  in 

various injection timing 

 

Fig. 7. Mean mass fraction of soot  as a function of  crank angle  in 
various injection timing 

Figure 8 indicates the amount of NO emission and the 
temperature profile in the combustion chamber for 740 and 
724 crank angles. At 724 оCA, the temperature profile in the 
piston bowl wall (the red color was the highest temperature 
at 2400 K and the blue color was the minimum in-cylinder 
temperature at about 1064 K) was more than elsewhere in 
the combustion chamber. In the 724 crank angle, only a 
small amount of NO (about 0%) was produced (the highest 
mass fraction of NO is indicated in Figure 6 and the 
minimum mass fraction of NO caculated to around 2.9e-30). 
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Fig. 8. Exhaust NO (for DME fuel) and in-cylinder temperature distribution at two crank angles (a = 724, b = 740) and under four 

injection timings (715, 716, 717 and 719 CA) 

3.3. Efficacy of fuel injection temperature 

The proper injection pressure and injection temperature 
can result in positive environmental effects [35]. The results 
of simulation in the case of rising injection temperatures 
have been presented in Figure 9 and 10. It was determined 

that the exhaust NO was reduced about 30% by increasing 
the fuel injection temperature from 320 to 360 K, whereas 
taking higher temperature caused soot formation to rise by 
33%. Thus, increasing injection temperature created a 
competition between NO and soot formation.  
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Fig. 9. Productions of exhaust NO caused by different injection 
temperature  

3.4. Improvement of baseline piston bowl 

NO pollution is highly toxic and a known carcinogen. 
Investigations show that parametric modification of piston 
bowl design affects NO emissions. Figure 11 illustrates that 
piston bowl geometry is classified into two parameters 
including R3 and Tm (bowl depth). The modifications of the 
R3 length are listed in Figures 12 and 13. It showed that 

exhaust NO can be reduced by rectification of the piston 
bowl dimensions (R3 and Tm length). It was found that the 
amount of exhaust NO was reduced (5.88 percentage) by 
the declining the size of R3 to 0.0079 m. Decreasing R3 
length under 0.0079 is not recommended since the piston 
bowl geometry loses its balance. 

 

Fig. 10. Amount of produced soot caused by different injection 
temperature 

 

 

Fig. 11. Characteristics of baseline piston bowl 

 

Fig. 12. Decreasing size of R3 and environmental effects (SOI= 1.5 
deg BTDC) 

 

Fig. 13. Decreasing size of Tm and environmental effects (SOI= 1.5 

deg BTDC) 
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As can be seen in Figure 13, exhaust NO was reduced 
(around 3.95%) by declining the Tm length to 0.008. For the 
baseline piston bowl, the reduction of the Tm length under 
0.008 is not recommended. 

3.5. Engine performance under various injection timings 

The mean effective pressure (IMEP) is known as a variable 
relating to produce pressure. This is a measure of engine 
displacement to perform the process that is independent of 
any diesel engine capacity. As seen in Figure 14, indicated 
power, efficiency, and IMEP did not changed very much 
with a change in injection timing. This case confirmed that 
a 3 deg BTDC injection timing for a DME-burning HD engine 
in terms of environmental and engine performance was 
preferable at a constant injected mass and with the same 
conditions applied. 

3.6. Performance of DME-burning engine vs. baseline 
engine: 

As seen in Figure 15, thermal efficiency with changing fuel 
improved by around 21%. As indicated, IMEP and indicated 
power were higher than DME when taking pure diesel into 
account. It was predicted that by using different piston bowl 
geometry or advancing injection timing, this reduction in 
IMEP and indicated power can be compensated. 

 

Fig. 14. Engine performance under various injection timings 

3.7. Using EGR system for the reduction of NO emission: 

The EGR system is one common way that can be used to 
reduce NO emissions. In studies on an ISM 370 engine, an 
EGR system has not been evaluated [10,3]. The effects of 
increasing the EGR composition on the exhaust NO were 
researched and are listed in Table 2. According to  
Figure 16, applying more EGR composition caused a 
reduction in NO emissions.  The exhaust NO was reduced 
(37%) by increasing the EGR composition from 0 to 0.2. The 
reduction of exhaust NO by implementation of different 
EGR composition is determined in Table 2. 

As displayed, the NO produced at 780 ⁰CA was reduced by 
increasing the EGR composition and NO was reduced by 
about 19% by applying 0.11 of EGR composition. In addition, 
NO emission was dramatically reduced (95%) by considering 
a 0.2 EGR composition (in comparison to 0.11 EGR 
composition). It was found that the appropriate EGR 
composition for a DME-burning diesel engine was 0.2. It was 
clear that using the EGR technique affected in-cylinder 
mean pressure. The results of this study showed that this 
efficacy (changing in-cylinder pressure) for a DME-burning 
diesel engine was negligible (with lesser than 1 percent 
error). 

 
Fig. 15. DME-burning engine performance vs. baseline diesel 

engine 

 
Fig. 16. Effects of increasing EGR composition on NO emissions 
after fuel injection  

Table 2. Reduction of exhaust NO emissions with rising EGR 
composition (at EVO crank angle) 

%NO 
 

EGR Composition 
 

19 0.11 

17 0.15 

37 0.2 

72 0.8 
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Mass fraction of NO Mean mass of CO2   Mass fraction of soot (780 oCA) 
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Fig. 17. Exhaust emissions distribution at 780 ⁰CA 
 

Exhaust gas recirculation (EGR) into the combustion 
chamber affected NO and other emissions (carbon dioxide 
and soot). As can be seen in Figure 17, soot emission 
increased by considering an EGR composition (declining the 
oxygen content and temperature with a rising EGR 
composition caused a reduction in the oxidation of the 
soot). It should be noted that the amount of soot formation 
was extremely lower than other pollutant gasses (carbon 

dioxide emission was over more than 1000 times of soot 
emission). It was determined that the production of NO and 
CO2 was reduced with increasing EGR. 

4. Conclusions 

In the present study, the effects of injecting DME biofuel 
into an ISM 370 HD diesel engine were investigated. The 
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results of the conducted studies showed that with a delay 
(changing the injection timing from 5 deg BTDC to 1 deg 
BTDC) in injection timing, NO reduction occurred by around 
23% while the soot emission increased (about 52%). It was 
found that the preferable fuel injection timing to meet the 
lowest emissions (with considering a competition between 
soot and NO production) in a DME-burning HD diesel engine 
was 3 deg BTDC. Furthermore, changing the accumulated 
heat release at this injection timing in comparison to the 
baseline (2 deg BTDC) was inconsiderable (error is under 
6%). Specifically, the delay in injection timing caused a 
reduction in peak pressure (from any injection timing to 740 
crank angle). The results showed that a very small 
modification (1 mm) in the piston bowl geometry had a 
significant impact on emissions. It became clear that NO 
emissions were reduced by decreasing R3 and Tm lengths 
(piston bowl geometry). Subsequently, with the 
modification of the R3 length from 8.4 mm to 7.9 mm, the 
amount of exhaust NO was reduced by around 10.25 %; 
with a decrease in Tm from 10 mm to 8 mm, NO production 
was reduced by around 5.9 %. In the present work, the 
appropriate length for R3 (7.9 mm) and Tm (8 mm) were 
specified. The EGR system reduced tailpipe NO emission. By 
considering DME fuel and by applying 0.2 EGR composition, 
the exhaust NO was reduced by around 37%. The 
appropriate (from the environmental standpoint) 
temperature for DME fuel injection into a combustion 
chamber was determined to be 340 K. As in other studies, 
the dimethyl ether fuel was considered usable for an ISM 
370 HD diesel engine. 

Nomenclature 

direct injection DI 
heavy duty HD 
start of injection SOI  
exhaust gas recirculation  EGR 
crank angle CA 
before top dead center  BTDC 
mean effective pressure IMEP 
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