[1] De Graaff, M., Bijmans, M. F., Abbas, B., Euverink, G. J., Muyzer, G., Janssen, A. J. (2011). Biological treatment of refinery spent caustics under halo-alkaline conditions. Bioresource technology, 102(15), 7257-7264.
[2] Kumfer, B., Felch, C., Maugans, C. (2010, March). Wet air oxidation treatment of spent caustic in petroleum refineries. In national petroleum refiners association conference, Phoenix, Arizona state (Vol. 23).
[3] Carlos, T. M. S., Maugans, C. B. (2000, September). Wet air oxidation of refinery spent caustic: a refinery case study. In NPRA conference, San Antonio, TX.
[4] Sheu, S. H., Weng, H. S. (2001). Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction. Water research, 35(8), 2017-2021.
[5] Rodriguez, N., Hansen, H. K., Nunez, P., Guzman, J. (2008). Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor. Journal of environmental science and health Part A, 43(8), 952-960.
[6] Nunez, P., Hansen, H. K., Rodriguez, N., Guzman, J., Gutierrez, C. (2009). Electrochemical generation of Fenton's reagent to treat spent caustic wastewater. Separation science and technology, 44(10), 2223-2233.
[7] Yu, Z. Z., Sun, D. Z., Li, C. H., Shi, P. F., Duan, X. D., Sun, G. R., Liu, J. X. (2003). UV-catalytic treatment of spent caustic from ethene plant with hydrogen peroxide and ozone oxidation. Journal of environmental sciences (China), 16(2), 272-275.
[8] Hawari, A., Ramadan, H., Abu-Reesh, I., Ouederni, M. (2015). A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and advanced oxidation. Journal of environmental management, 151, 105-112.
[9] Abdulah, S. S., Hassan, M. A., Noor, Z. Z., Aris, A. (2011, September). Optimization of photo-Fenton oxidation of sulfidic spent caustic by using response surface methodology. In national postgraduate conference (NPC), 2011 (pp. 1-7). IEEE.
[10] Chen, C. (2013). Wet air oxidation and catalytic wet air oxidation for refinery spent caustics degradation. Journal of the chemical Ssociety of Pakistan, 35(2), 244-250.
[11] Alaiezadeh,M.(2015).Spent caustic wastewater treatment with electrical coagulation method. The 1st international conference oil, gas, petrochemical and power plant.
[12] Montgomery,D.(2012).Design and Analysis of Experiments.6th ed.,John Wiley and Sons.
[13] Haykin,S.(2008).Neural Networks: A Comprehensive Foundation.4th ed.,Prentice Hall PTR.
[14] Rehman, S., Ullah, R., Butt, A. M., Gohar, N. D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of hazardous materials, 170(2), 560-569.
[15] Rivera‐Utrilla, J., Bautista‐Toledo, I., Ferro‐García, M. A., Moreno‐Castilla, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of chemical technology and biotechnology, 76(12), 1209-1215.
[16] Standard methods for the examination of water and wastewater. (2005). in American Public Health Association (APHA):Washington, DC, USA, W.E. Federation and A.P.H. Association,Editors.
[17] Gaya, U. I., Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of photochemistry and photobiology C: Photochemistry reviews, 9(1), 1-12.
[18] Nelofer, R., Ramanan, R. N., Rahman, R. N. Z. R. A., Basri, M., Ariff, A. B. (2012). Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21. Journal of industrial microbiology and biotechnology, 39(2), 243-254.