Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

Document Type: Research Paper

Author

Department of Chemical Engineerin, Ilam University

Abstract

The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards) were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ), maximum specific growth rate (μmax), and maximum cell concentration (Xmax). The low root-mean-square error (RMSE) and high regression coefficients (R2) indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

Keywords

Main Subjects


[1] Chang, H. X., Huang, Y., Fu, Q., Liao, Q., Zhu, X. (2016). Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresource technology, 206, 231-238.

[2] Adamczyk, M., Lasek, J., Skawińska, A. (2016). CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied biochemistry and biotechnology, 179(7), 1248-1261.

[3] Rahimi, M. R., Mosleh, S. (2015). CO2 removal from air in a countercurrent rotating packed bed, experimental determination of height of transfer unit. Advances in Environmental technology, 1(1), 25-30.

[4] Patino, R., Janssen, M., von Stockar, U. (2007). A study of the growth for the microalga Chlorella vulgaris by photo‐bio‐calorimetry and other on‐line and off‐line techniques. Biotechnology and bioengineering, 96(4), 757-767.

[5] Ogbonna, J. C., Masui, H., Tanaka, H. (1997). Sequential heterotrophic/autotrophic cultivation–an efficient method of producing Chlorella biomass for health food and animal feed. Journal of applied phycology, 9(4), 359-366.

[6] Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Academic press.

[7] Pulz, O., Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 65(6), 635-648.

[8] Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.

[9] Droop, M. R. (1974). Heterotrophy of carbon. Algal physiology and biochemistry, 530-559.

[10] Richmond, A. (2004). Biological principles of mass cultivation. Handbook of micro algal culture: Biotechnology and applied phycology, 125-177.

[11] Vieira Costa, J. A., Colla, L. M., Filho, P. D., Kabke, K., Weber, A. (2002). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World journal of microbiology and biotechnology, 18(7), 603-607.

[12] Çelekli, A., Balcı, M., Bozkurt, H. (2008). Modelling of scenedesmus obliquus; function of nutrients with modified Gompertz model. Bioresource technology, 99(18), 8742-8747.

[13] Bozkurt, H., Erkmen, O. (2001). Predictive modeling of Yersinia enterocolitica inactivation in Turkish feta cheese during storage. Journal of food engineering, 47(2), 81-87.

[14] Zwietering, M. H., Jongenburger, I., Rombouts, F. M., Van't Riet, K. (1990). Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881.

[15] Whiting, R. C. (1995). Microbial modeling in foods. Critical reviews in food science and nutrition, 35(6), 467-494.

[16] Çelekli, A., Yavuzatmaca, M. (2009). Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresource technology, 100(5), 1847-1851.

[17] Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource technology, 139, 149-154.

[18] Niizawa, I., Heinrich, J. M., Irazoqui, H. A. (2014). Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochemical engineering journal, 90, 214-223.

[19] Lacerda, L. M. C. F., Queiroz, M. I., Furlan, L. T., Lauro, M. J., Modenesi, K., Jacob-Lopes, E., Franco, T. T. (2011). Improving refinery wastewater for microalgal biomass production and CO2 biofixation: predictive modeling and simulation. Journal of petroleum science and engineering, 78(3), 679-686.

[20] Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61.

[21] Jacob-Lopes, E., Scoparo, C. H. G., Franco, T. T. (2008). Rates of CO2 removal by Aphanothece microscopica Nägeli in tubular photobioreactors.Chemical engineering and processing: Process intensification, 47(8), 1365-1373.

[22] Pearl, R., Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the national academy of sciences, 6(6), 275-288.

[23] Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. correspondance mathématique et physique publiée par a.Quetelet, 10, 113-121.

[24] Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583.

[25] Baranyi, J., Roberts, T. A., McClure, P. (1993). A non-autonomous differential equation to modelbacterial growth. Food microbiology, 10(1), 43-59.

[26] Baranyi, J., Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International journal of food microbiology, 23(3-4), 277-294.

[27] Baranyi, J. (1997). Simple is good as long as it is enough. Food microbiology, 14(2), 189-192.

[28] Morgan, P. H., Mercer, L. P., Flodin, N. W. (1975). General model for nutritional responses of higher organisms. Proceedings of the national academy of sciences, 72(11), 4327-4331.

[29] Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of applied bacteriology, 81(5), 501-508.

[30] Dong, Q., Tu, K., Guo, L., Li, H., Zhao, Y. (2007). Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions. Food microbiology, 24(6), 624-632

[31] Phua, S. T., Davey, K. R. (2007). Predictive modelling of high pressure (≤ 700MPa)–cold pasteurisation (≤ 25°C) of Escherichia coli, Yersinia enterocolitica and Listeria monocytogenes in three liquid foods. Chemical engineering and processing: Process intensification, 46(5), 458-464.

[32] McDonald, K., Sun, D. W. (1999). Predictive food microbiology for the meat industry: a review. International journal of food microbiology, 52(1), 1-27.

[33] Hodaifa, G., Martínez, M. E., Sánchez, S. (2008). Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource technology, 99(5), 1111-1117.

[34] Masson, Y., Ainsworth, P., Fuller, D., Bozkurt, H., İbanoǧlu, Ş. (2002). Growth of Pseudomonas fluorescens and Candida sake in homogenized mushrooms under modified atmosphere. Journal of food engineering, 54(2), 125-131.

[35] Jacob-Lopes, E., Lacerda, L. M. C. F., Franco, T. T. (2008). Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochemical engineering journal, 40(1), 27-34.

[36] De Morais, M. G., Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology letters, 29(9), 1349-1352.

[37] Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource technology99(9), 3389-3396.

[38] Sinetova, M. A., Červený, J., Zavřel, T., Nedbal, L. (2012). On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. Journal of biotechnology, 162(1), 148-155.

[39] Hulatt, C. J., Thomas, D. N. (2011). Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors.Bioresource technology, 102(10), 5775-5787.

[40] Ho, S. H., Chen, W. M., Chang, J. S. (2010). Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production.Bioresource technology, 101(22), 8725-8730.

[41] Bhola, V., Desikan, R., Santosh, S. K., Subburamu, K., Sanniyasi, E., Bux, F. (2011). Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of bioscience and bioengineering, 111(3), 377-382.

[42] Ugwu, C. U., Aoyagi, H., Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource technology, 99(10), 4021-4028.

[43] Ramos-Suárez, J. L., Cuadra, F. G., Acién, F. G., Carreras, N. (2014). Benefits of combining anaerobic digestion and amino acid extraction from microalgae. Chemical engineering journal, 258, 1-9.

[44] Ling, X., Guo, J., Liu, X., Zhang, X., Wang, N., Lu, Y., Ng, I. S. (2015). Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by schizochytrium sp. LU310. Bioresource technology, 184, 139-147.

[45] Lorenz, R. T., Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in biotechnology, 18(4), 160-167.