[1] Daghrir, R., Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental chemistry letters, 11(3), 209-227.
[2] Liu, H., Yang, Y., Kang, J., Fan, M., Qu, J. (2012). Removal of tetracycline from water by Fe−Mn binary oxide. Journal of environmental sciences, 24(2), 242–247.
[3] Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. Journal of environmental management, 90(8), 2354-2366.
[4] Saadati, F., Keramati, N., Ghazi, M. M. (2016). Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Critical reviews in environmental science and technology, 46(8), 757-782.
[5] Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., Qu, J. (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of hazardous materials, 185(2), 1256-1263.
[6] Nezamzadeh-Ejhieh, A., Shirzadi, A. (2014). Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere, 107, 136-144.
[7] Yue, L., Wang, S., Shan, G., Wu, W., Qiang, L., Zhu, L. (2015). Novel MWNTs–Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water. Applied catalysis B: Environmental, 176, 11-19.
[8] Choina, J., Duwensee, H., Flechsig, G. U., Kosslick, H., Morawski, A. W., Tuan, V. A., Schulz, A. (2010). Removal of hazardous pharmaceutical from water by photocatalytic treatment. Central european journal of chemistry, 8(6), 1288-1297.
[9] Zhang, Y. P., Jia, C. G., Peng, R., Ma, F., Ou, G. N. (2014). Heterogeneous photo-assisted Fenton catalytic removal of tetracycline using Fe-Ce pillared bentonite. Journal of central south university, 21, 310-316.
[10] Yu, X., Lu, Z., Si, N., Zhou, W., Chen, T., Gao, X., Yan, C. (2014). Preparation of rare earth metal ion/TiO2 Hal-conducting polymers by ions imprinting technique and its photodegradation property on tetracycline. Applied clay science, 99, 125-130.
[11] Chang, C. T., Wang, J. J., Ouyang, T., Zhang, Q., Jing, Y. H. (2015). Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Materials science and engineering: B, 196, 53-60.
[12] Zhu, X. D., Wang, Y. J., Sun, R. J., Zhou, D. M. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2 .Chemosphere, 92(8), 925-932.
[13] Abbasi, A., Ghanbari, D., Salavati-Niasari, M., Hamadanian, M. (2016). Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. Journal of materials science: Materials in electronics, 27(5), 4800-4809.
[14] Shi, J. W., Zheng, J. T., Ji, X. J. (2010). TiO2-SiO2/activated carbon fibers photocatalyst: preparation, characterization, and photocatalytic activity. Environmental engineering science, 27(11), 923-930.
[15] Paul, B., Martens, W. N., Frost, R. L. (2012). Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Applied clay science, 57, 49-54.
[16] Wang, H., Yang, B., Zhang, W. J. (2010). Photocatalytic degradation of methyl orange on Y zeolite supported TiO2. In Advanced Materials Research (Vol. 129, pp. 733-737). Trans Tech Publications.
[17] Liu, S., Lim, M., Amal, R. (2014). TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration. Chemical engineering science, 105, 46-52.
[18] Durgakumari, V., Subrahmanyam, M., Rao, K. S., Ratnamala, A., Noorjahan, M., Tanaka, K. (2002). An easy and efficient use of TiO2 supported HZSM-5 and TiO2+HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied catalysis A: General, 234(1), 155-165.
[19] Treacy, M. M. J., Higgins, J. B. (2001). Collection of simulated XRD powder patterns for zeolites. Published on behalf of the Structure Commission of the ‘International Zeolite Association’. Powder patterns, 203, 204.
[20] Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and pigments, 77(2), 327-334.
[21] Alshameri, Aref, Chunjie Yan, and Xinrong Lei. "Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: preparation, characterization and thermodynamic." Microporous and mesoporous materials 196 (2014): 145-157.
[22] Kanakaraju, D., Kockler, J., Motti, C. A., Glass, B. D., Oelgemöller, M. (2015). Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Applied catalysis B: Environmental, 166, 45-55.
[23] Ogura, M., Kawazu, Y., Takahashi, H., Okubo, T. (2003). Aluminosilicate species in the hydrogel phase formed during the aging process for the crystallization of FAU zeolite. Chemistry of materials, 15(13), 2661-2667.
[24] Zhao, C., Deng, H., Li, Y., Liu, Z. (2010). Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. Journal of hazardous materials, 176(1), 884-892.
[25] Zhong, S., Zhang, F., Yu, B., Zhao, P., Jia, L., Zhang, S. (2016). Synthesis of PVP-Bi2WO6 photocatalyst and degradation of tetracycline hydrochloride under visible light. Journal of materials science: Materials in electronics, 27(3), 3011-3020.
[26] Ghorai, T. K., Biswas, N. (2013). Photodegradation of rhodamine 6G in aqueous solution via SrCrO4 and TiO2 nano-sphere mixed oxides. Journal of materials research and technology, 2(1), 10-17.
[27] Anpo, M., Takeuchi, M. (2003). The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of catalysis, 216(1), 505-516.
[28] Ohno, T., Tagawa, S., Itoh, H., Suzuki, H., Matsuda, T. (2009). Size effect of TiO2–SiO2 nano-hybrid particle. Materials chemistry and physics,113(1), 119-123.
[29] Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied surface science, 252(5), 1410-1416.
[30] Keramati, N., Nasernejad, B., Fallah, N. (2014). Synthesis of N-TiO2: Stability and visible light activity for aqueous styrene degradation. Journal of dispersion science and technology, 35(10), 1476-1482.