Biodegradation of malathion by serratia marcescens isolated from Arvandkenar region, Iran

Document Type: Research Paper

Authors

1 Faculty of Biological Science, Shahid Beheshti University, GC, Tehran, Iran

2 Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan va Blaoochestan, Iran

Abstract

The global use of pesticides has resulted in the contamination of various ecosystems worldwide. The impact of these pesticides can be reduced through bioremediation. The factors that influence the biodegradation rate include the isolation of efficient bacteria for use in remediation and the determination of optimal biodegradation conditions. In this study, malathion degrading bacteria were isolated from agricultural soil samples taken from the Arvandkenar region in Iran. To optimize the biodegradation of malathion by an isolated strain, the effect of four parameters (temperature, salinity, NH4Cl and K2HPO4) was evaluated while considering protein concentrations at different times. The malathion remaining in the media was measured using the gas chromatography method. A gram-negative bacterium strain BNA1 with malathion biodegrading ability was isolated from the soil sample which showed a 99% similarity to Serratia marcescens. The optimum biodegradation condition occurred at a temperature = 30 ˚C, salinity = 0 %, NH4Cl = 0.25 g/L and K2HPO4 = 0.25 g/L. A biodegradation efficiency of 65% was obtained under the above-mentioned condition. The results of this study revealed the significant capability of BNA1 in the biodegradation of malathion. Therefore, the use of an isolated strain may be considered as an important tool in the bioremediation of pesticide-contaminated soil.

Keywords

Main Subjects


[1] Wu, H., Zhang, R., Liu, J., Guo, Y., Ma, E. (2011). Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: crididae). Chemosphere, 83(4), 599-604.

[2] Eleršek, T., Filipič, M. (2011). Organophosphorus pesticides-mechanisms of their toxicity. PM Stoytcheva. 243-260

[3] Singh, B. K., Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS microbiology reviews, 30(3), 428-471.

[4] Karyab, H., Mahvi, A. H., Nazmara, S., & Bahojb, A. (2013). Determination of water sources contamination to diazinon and malathion and spatial pollution patterns in Qazvin, Iran. Bulletin of environmental contamination and toxicology, 90(1), 126-131.

[5] Shayeghi, M., Shahtaheri, S. J., & Selsele, M. (2001). Phosphorous Insecticides Residues in Mazandaran River Waters, Iran (2000). Iranian Journal of Public Health, 30(3-4), 115-118.

[6] González-Alzaga, B., Lacasaña, M., Aguilar-Garduño, C., Rodríguez-Barranco, M., Ballester, F., Rebagliato, M., Hernández, A. F. (2014). A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicology letters, 230(2), 104-121.

[7] Huen, K., Bradman, A., Harley, K., Yousefi, P., Barr, D. B., Eskenazi, B., Holland, N. (2012). Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community. Environmental research, 117, 8-16.

[8] Lukaszewicz-Hussain, A. (2010). Role of oxidative stress in organophosphate insecticide toxicity–Short review. Pesticide biochemistry and physiology, 98(2), 145-150.

[9] Arbeli, Z., Fuentes, C. L. (2007). Accelerated biodegradation of pesticides: An overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop protection, 26(12), 1733-1746.

[10] Shahriari Moghadam, M., Ebrahimipour, G., Abtahi, B., Ghassempour, A. (2013). Isolation, identification and optimization of phenanthrene degrading bacteria from the coastal sediments of Nayband Bay. Jundishapur journal of microbiology, 6(9). 650-663

[11] Imran, H., Altaf, K. M., Kim, J. G. (2006). Degradation of malathion by Pseudomonas during activated sludge treatment system using principal component analysis (PCA). Journal of environmental sciences, 18(4), 797-804.

[12] Abo-Amer, A. (2007). Involvement of chromosomally-encoded genes in malathion utilization by Pseudomonas aeruginosa AA112. Acta microbiologica et immunologica Hungarica, 54(3), 261-277.

[13] Mohamed, Z. K., Ahmed, M. A., Fetyan, N. A., Elnagdy, S. M. (2010). Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt. Journal of advanced research, 1(2), 145-149.

[14] Schlegel HG. (1992). Allgemeine Mikrobiologie:   Auflage, Georg Thieme Verlag.

[15] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

[16] Nadalian, B., Shahriari Mogadam, M., Ebrahimipour, G. H. (2016). Biodegradation of malathion using mixed culture of Serratia marcescens BNA1 and Pseudomonas aeruginosa BNA2. Iranian journal of health and environment, 8(4), 525-534.

[17] Romeh, A. A., Hendawi, M. Y. (2014). Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). Journal of agricultural science and technology, 16(2), 265-276.

[18] Deng, S., Chen, Y., Wang, D., Shi, T., Wu, X., Ma, X., Li, Q. X. (2015). Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. Journal of hazardous materials, 297, 17-24.

[19] Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of environmental sciences, 25(11), 2257-2264.

[20] Pakala, S. B., Gorla, P., Pinjari, A. B., Krovidi, R. K., Baru, R., Yanamandra, M., Siddavattam, D. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Applied microbiology and biotechnology, 73(6), 1452-1462.

[21] Mohanan, S., Maruthamuthu, S., Muthukumar, N., Rajasekar, A., Palaniswamy, N. (2007). Biodegradation of palmarosa oil (green oil) by Serratia marcescens. International journal of environmental science and technology, 4(2), 279-283.

[22] Arbabi, M., Nasseri, S., Chimezie, A. (2009). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in petroleum contaminated soils. Iranian journal of chemistry and chemical engineering (IJCCE), 28(3), 53-59.

[23] Abo-Amer, A. E. (2011). Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. Journal microbiol biotechnol, 21(1), 71-80.

[24] Cycoń, M., Żmijowska, A., Piotrowska-Seget, Z. (2014). Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International journal of environmental science and technology, 11(5), 1305-1316.

[25] Montero-Rodríguez, D., Andrade, R. F., Ribeiro, D. L. R., Rubio-Ribeaux, D., Lima, R. A., Araújo, H. W., Campos-Takaki, G. M. (2015). Bioremediation of petroleum derivative using biosurfactant produced by Serratia marcescens UCP/WFCC 1549 in low-cost medium. International journal current microbiology and applied sciences, 4(7), 550-562.

[26] Kannan, V., Vanitha, V. (2005). Influence of assay medium on degradation of malathion by Serratia marcescens. Indian journal of biotechnology, 4(2), 277-283.

[27] Ortiz-Hernández, M. L., Sánchez-Salinas, E. (2010). Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revista internacional de contaminación ambiental, 26(1), 27-38.

[28] Bidlan, R., Manonmani, H. K. (2002). Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process biochemistry, 38(1), 49-56.

[29] Azmy, A. F., Saafan, A. E., Essam, T. M., Amin, M. A., Ahmed, S. H. (2014). Biodegradation of malathion by Acinetobacter baumannii Strain AFA isolated from domestic sewage in Egypt. Biodegradation, 34(5), 55-65.

[30] Li, H., Hu, L., Xia, Z. (2013). Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles. Materials, 6(9), 3676-3687.

[31] Shahriari Moghadam, M., Ebrahimipour, G., Abtahi, B., Khazaei, N., Karbasi, N. (2014). Statistical optimization of crude oil biodegradation by Marinobacter sp. isolated from Qeshm Island, Iran. Iranian journal of biotechnology, 12(1),35-41.

[32] Zhou, E., Crawford, R. L. (1995). Effects of oxygen, nitrogen, and temperature on gasoline iodegradation in soil. Biodegradation, 6(2), 127-140.

[33] Qiu, Y., Pang, H., Zhou, Z., Zhang, P., Feng, Y., Sheng, G. D. (2009). Competitive biodegradation of dichlobenil and atrazine coexisting in soil amended with a char and citrate. Environmental pollution, 157(11), 2964-2969.