[1] Wang, Q., Geng, B., Wang, S. (2009). ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environmental science and technology, 43(23), 8968-8973.
[2] Jain, A. K., Gupta, V. K., Jain, S., Suhas. (2004). Removal of chlorophenols using industrial wastes. Environmental science and technology, 38(4), 1195-1200.
[3] Chen, D., Ray, A. K. (1999). Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental, 23(2), 143-157.
[4] Sherrard, K. B., Marriott, P. J., Amiet, R. G., McCormick, M. J., Colton, R., Millington, K. (1996). Spectroscopic analysis of heterogeneous photocatalysis products of nonylphenol-and primary alcohol ethoxylate nonionic surfactants. Chemosphere, 33(10), 1921-1940.
[5] Selcuk, H., Bekbolet, M. (2008). Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO 2 coated photoanode. Chemosphere, 73(5), 854-858.
[6] Devi, L. G., Murthy, B. N., Kumar, S. G. (2009). Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO 2 and TiO 2 doped with Mo 6+ ions under solar light: correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere, 76(8), 1163-1166.
[7] Yamazaki, S., Fujiwara, Y., Yabuno, S., Adachi, K., Honda, K. (2012). Synthesis of porous platinum-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation.Applied catalysis B: Environmental, 121, 148-153.
[8] Gaya, U. I., Abdullah, A. H., Zainal, Z., Hussein, M. Z. (2009). Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. Journal of hazardous materials, 168(1), 57-63.
[9] Ou, H. H., Lo, S. L., Wu, C. H. (2006). Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol. Journal of hazardous materials, 137(3), 1362-1370.
[10] Behnajady, M. A., Modirshahla, N., Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. Journal of hazardous materials, 133(1), 226-232.
[11] Salehi, K., Daraei, H., Teymouri, P., Maleki, A. (2014). Hydrothermal synthesis of surface-modified copper oxide-doped zinc oxide nanoparticles for degradation of acid black 1: Modeling and optimization by response surface methodology. Journal of advances in environmental health research, 2(2), 101-109.
[12] Zhou, G., Deng, J. (2007). Preparation and photocatalytic performance of Ag/ZnO nano-composites. Materials science in semiconductor processing, 10 (2), 90-96.
[13] Irimpan, L., Krishnan, B., Nampoori, V. P. N., Radhakrishnan, P. (2008). Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO–TiO2. Journal of colloid and interface science, 324(1), 99-104.
[14] Georgieva, J., Armyanov, S., Valova, E., Poulios, I., Sotiropoulos, S. (2007). Enhanced photocatalytic activity of electrosynthesised tungsten trioxide–titanium dioxide bi-layer coatings under ultraviolet and visible light illumination. Electrochemistry communications, 9(3), 365-370.
[15] Wang, C., Wang, X., Xu, B. Q., Zhao, J., Mai, B., Peng, P. A., Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and photobiology A: Chemistry, 168(1), 47-52.
[16] Sakthivel, S., Geissen, S. U., Bahnemann, D. W., Murugesan, V., Vogelpohl, A. (2002). Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. Journal of photochemistry and photobiology A: chemistry, 148(1), 283-293.
[17] Yoon, D. H., Yu, J. H., Choi, G. M. (1998). CO gas sensing properties of ZnO–CuO composite. Sensors and actuators B: Chemical, 46(1), 15-23.
[18] Reitz, T. L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H. H. (2000). Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction. Journal of molecular catalysis A: chemical, 162(1), 275-285.
[19] Choi, J. D., Choi, G. M. (2000). Electrical and CO gas sensing properties of layered ZnO–CuO sensor. Sensors and actuators B: Chemical, 69(1), 120-126.
[20] Udom, I., Ram, M. K., Stefanakos, E. K., Hepp, A. F., Goswami, D. Y. (2013). One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Materials science in semiconductor processing, 16(6), 2070-2083.
[21] Udom, I., Ram, M. K., Stefanakos, E. K., Hepp, A. F., Goswami, D. Y. (2013). One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Materials science in semiconductor processing,16(6), 2070-2083.
[22] Tao, Y. M., Ma, S. Y., Chen, H. X., Meng, J. X., Hou, L. L., Jia, Y. F., Shang, X. R. (2011). Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films. Vacuum, 85(7), 744-748.
[23] Wang, X. B., Song, C., Geng, K. W., Zeng, F., Pan, F. (2007). Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Applied surface science, 253(16), 6905-6909.
[24] Chang, Y. S., Chien, C. T., Chen, C. W., Chu, T. Y., Chiang, H. H., Ku, C. H., Chen, K. H. (2007). structural and optical properties of single crystal Zn1− xMgxO nanorods—experimental and theoretical studies. Journal of applied physics, 101(3), 033502–033509.
[25] Reddy, A. J., Kokila, M. K., Nagabhushana, H., Chakradhar, R. P. S., Shivakumara, C., Rao, J. L., Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of alloys and compounds, 509(17), 5349-5355.
[26] Sonawane, Y. S., Kanade, K. G., Kale, B. B., Aiyer, R. C. (2008). Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles. Materials research bulletin, 43(10), 2719-2726.
[27] Thennarasu, G., Sivasamy, A., Kavithaa, S. (2013). Synthesis, characterization and catalytic activity of nano size semiconductor metal oxide in a visible light batch slurry photoreactor. Journal of molecular liquids, 179, 18-26.
[28] Jonidi-Jafari, A., Shirzad-Siboni, M., Yang, J. K., Naimi-Joubani, M., Farrokhi, M. (2015). Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. Journal of the Taiwan institute of chemical engineers, 50, 100-107.
[29] Naimi-Joubani, M., Shirzad-Siboni, M., Yang, J. K., Gholami, M., Farzadkia, M. (2015). Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. Journal of industrial and engineering chemistry, 22, 317-323.
[30] Samarghandi, M. R., Yang, J. K., Lee, S. M., Giahi, O., Shirzad-Siboni, M. (2014). Effect of different type of organic compounds on the photocatalytic reduction of Cr (VI) in presence of ZnO nanoparticles. Desalination and water treatment, 52(7-9), 1531-1538.
[31] Shirzad-Siboni, M., Farrokhi, M., Darvishi Cheshmeh Soltani, R., Khataee, A., Tajassosi, S. (2014). Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin. Industrial and engineering chemistry research, 53(3), 1079-1087.
[32] Ahmed, S., Rasul, M. G., Brown, R., Hashib, M. A. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of environmental management, 92(3), 311-330.
[33] Elghniji, K., Hentati, O., Mlaik, N., Mahfoudh, A., Ksibi, M. (2012). Photocatalytic degradation of 4-chlorophenol under P-modified TiO 2/UV system: Kinetics, intermediates, phytotoxicity and acute toxicity. Journal of environmental sciences, 24(3), 479-487.
[34] Li, X., Hou, Y., Zhao, Q., Teng, W., Hu, X., Chen, G. (2011). Capability of novel ZnFe 2 O 4 nanotube arrays for visible-light induced degradation of 4-chlorophenol. Chemosphere, 82(4), 581-586.
[35] Zak, A. K., Wang, H. Z., Yousefi, R., Golsheikh, A. M., Ren, Z. F. (2013). Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrasonics sonochemistry, 20(1), 395-400.
[36] Tauc, J., Menth, A. (1972). States in the gap. Journal of non-crystalline solids, 8, 569-585.
[37] Abdollahi, Y., Abdullah, A. H., Zainal, Z., Yusof, N. A. (2011). Synthesis and characterization of Manganese doped ZnO nanoparticles. International journal of basic and applied sciences, 11(4), 62-69.
[38] Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. John Wiley and Sons, Ltd.
[39] Reddy, A. J., Kokila, M. K., Nagabhushana, H., Chakradhar, R. P. S., Shivakumara, C., Rao, J. L., Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of alloys and compounds, 509(17), 5349-5355.
[40] Taylor, D. W., Elliott, R. J. (1988). Optical properties of mixed crystals, North-Holland.
[41] Singhal, S., Kaur, J., Namgyal, T., Sharma, R. (2012). Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Physica B: Condensed matter, 407(8), 1223-1226.
[42] Selvam, N. C. S., Narayanan, S., Kennedy, L. J., Vijaya, J. J. (2013). Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol. Journal of environmental sciences, 25(10), 2157-2167.
[43] Pardeshi, S. K., Patil, A. B. (2009). Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. Journal of hazardous materials, 163(1), 403-409.
[44] Behnajady, M. A., Modirshahla, N., Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere, 55(1), 129-134.
[45] Rabindranathan, S., Devipriya, S., Yesodharan, S. (2003). Photocatalytic degradation of phosphamidon on semiconductor oxides. Journal of hazardous materials, 102(2), 217-229.
[46] Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge: III. Update. Journal of colloid and interface science, 298(2), 730-741.
[47] Liu, F., He, G., Zhao, M., Qu, M., Huang, L. (2011). Electrochemical behaviors of chlorophenol aqueous solutions at boron- doped diamond electrode. Open materials science journal, 5, 35-39.
[48] Zhang, D. (2010). Synthesis and characterization of ZnO-doped cupric oxides and evaluation of their photocatalytic performance under visible light. Transition metal chemistry, 35(6), 689-694.
[49] Doong, R. A., Chen, C. H., Maithreepala, R. A., sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water research, 35(12), 2873-2880.
[50] Baruah, S., Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and technology of advanced materials, 10(1), 1-18
[51] Daneshvar, N., Salari, D., Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of photochemistry and photobiology A: chemistry, 162(2), 317-322.
[52] Rabindranathan, S., Devipriya, S., Yesodharan, S. (2003). Photocatalytic degradation of phosphamidon on semiconductor oxides. Journal of hazardous materials, 102(2), 217-229.
[53] Shankar, M. V., Cheralathan, K. K., Arabindoo, B., Palanichamy, M., Murugesan, V. (2004). Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO2/Hβ. Journal of molecular catalysis A: Chemical, 223(1), 195-200.
[54] Körbahti, B. K., Rauf, M. A. (2008). Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue. Chemical engineering journal, 136(1), 25-3