Preparation and characterizations of CuO doped ZnO nano-structure for the photocatalytic degradation of 4-chlorophenol under visible light

Document Type: Research Paper

Authors

Faculty of Chemical, Petroleum, and Gas Engineering, Semnan University, Semnan, Iran

Abstract

In the present investigation, a ZnO nanostructure was synthesized by means of precipitation and sonochemical methods. The X-ray diffraction (XRD) pattern indicated that the wurtzite structure of ZnO had a hexagonal symmetry and there was no impurity. The average ZnO particles crystallite size was calculated at about 41 nm. The SEM and TEM images revealed nanostructure ZnO particles with a cauliflower-like and rod morphology with dimensions of 85, 79 and 117 nm. In order to investigate the increment of ZnO photoactivity under visible light, the CuO doped ZnO nanostructures were fabricated by a wet impregnation method using copper oxide as the copper source and ZnO as the precursor. The XRD analysis confirmed that the CuO phase was present in the as-prepared sample and the average size of nano crystalline decreased to about 36 nm. The DRS spectra indicated the extended absorption of CuO-ZnO to the visible range as a result of band gap reduction to 2.9 eV (in comparison of 3.2 eV in ZnO). In order to investigate the photocatalytic activity of the synthesized photocatalyst, the degradation of 4-Chlorophenol under visible light was performed. Sixteen experiments using full factorial were executed by adjusting four parameters (amount of catalyst, initial concentration of 4-Chlorophenol, pH, and time of irradiation). An empirical expression was proposed and successfully used to model the photocatalytic process with a high correlation, and an optimal experimental region was also obtained. According to the developed model for degradation and the subsequent ANOVA test using Design Expert software, the time of irradiation with a 46.57% effect played the most important role in the photocatalytic activity, while the influences of parameters on each other were negligible. Optimal experimental conditions for 4-Chlorophenol concentration (0.01 g/L) were found at an initial pH =8 and a catalyst loading of 0.07 g/L. The results indicated that CuO-ZnO can remove 95% of 4-chlorophenol from water under optimal conditions.

Keywords

Main Subjects


[1] Wang, Q., Geng, B., Wang, S. (2009). ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environmental science and technology, 43(23), 8968-8973.

[2] Jain, A. K., Gupta, V. K., Jain, S., Suhas. (2004). Removal of chlorophenols using industrial wastes. Environmental science and technology, 38(4), 1195-1200.

[3] Chen, D., Ray, A. K. (1999). Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental, 23(2), 143-157.

[4] Sherrard, K. B., Marriott, P. J., Amiet, R. G., McCormick, M. J., Colton, R., Millington, K. (1996). Spectroscopic analysis of heterogeneous photocatalysis products of nonylphenol-and primary alcohol ethoxylate nonionic surfactants. Chemosphere, 33(10), 1921-1940.

[5] Selcuk, H., Bekbolet, M. (2008). Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO 2 coated photoanode. Chemosphere, 73(5), 854-858.

[6] Devi, L. G., Murthy, B. N., Kumar, S. G. (2009). Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO 2 and TiO 2 doped with Mo 6+ ions under solar light: correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere, 76(8), 1163-1166.

[7] Yamazaki, S., Fujiwara, Y., Yabuno, S., Adachi, K., Honda, K. (2012). Synthesis of porous platinum-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation.Applied catalysis B: Environmental, 121, 148-153.

[8] Gaya, U. I., Abdullah, A. H., Zainal, Z., Hussein, M. Z. (2009). Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. Journal of hazardous materials, 168(1), 57-63.

[9] Ou, H. H., Lo, S. L., Wu, C. H. (2006). Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol. Journal of hazardous materials, 137(3), 1362-1370.

[10] Behnajady, M. A., Modirshahla, N., Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. Journal of hazardous materials, 133(1), 226-232.

[11] Salehi, K., Daraei, H., Teymouri, P., Maleki, A. (2014). Hydrothermal synthesis of surface-modified copper oxide-doped zinc oxide nanoparticles for degradation of acid black 1: Modeling and optimization by response surface methodology.  Journal of advances in environmental health research, 2(2), 101-109.

[12] Zhou, G., Deng, J. (2007). Preparation and photocatalytic performance of Ag/ZnO nano-composites. Materials science in semiconductor processing, 10 (2), 90-96.

[13] Irimpan, L., Krishnan, B., Nampoori, V. P. N., Radhakrishnan, P. (2008). Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO–TiO2. Journal of colloid and interface science, 324(1), 99-104.

[14] Georgieva, J., Armyanov, S., Valova, E., Poulios, I., Sotiropoulos, S. (2007). Enhanced photocatalytic activity of electrosynthesised tungsten trioxide–titanium dioxide bi-layer coatings under ultraviolet and visible light illumination. Electrochemistry communications, 9(3), 365-370.

[15] Wang, C., Wang, X., Xu, B. Q., Zhao, J., Mai, B., Peng, P. A., Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnOphotocatalysts for methyl orange degradation. Journal of Photochemistry and photobiology A: Chemistry, 168(1), 47-52.

[16] Sakthivel, S., Geissen, S. U., Bahnemann, D. W., Murugesan, V., Vogelpohl, A. (2002). Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WOand CdS deposited on ZnO. Journal of photochemistry and photobiology A: chemistry, 148(1), 283-293.

[17] Yoon, D. H., Yu, J. H., Choi, G. M. (1998). CO gas sensing properties of ZnO–CuO composite. Sensors and actuators B: Chemical, 46(1), 15-23.

[18] Reitz, T. L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H. H. (2000). Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction. Journal of molecular catalysis A: chemical, 162(1), 275-285.

[19] Choi, J. D., Choi, G. M. (2000). Electrical and CO gas sensing properties of layered ZnO–CuO sensor. Sensors and actuators B: Chemical, 69(1), 120-126.

[20] Udom, I., Ram, M. K., Stefanakos, E. K., Hepp, A. F., Goswami, D. Y. (2013). One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Materials science in semiconductor processing, 16(6), 2070-2083.

[21] Udom, I., Ram, M. K., Stefanakos, E. K., Hepp, A. F., Goswami, D. Y. (2013). One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Materials science in semiconductor processing,16(6), 2070-2083.

[22] Tao, Y. M., Ma, S. Y., Chen, H. X., Meng, J. X., Hou, L. L., Jia, Y. F., Shang, X. R. (2011). Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films. Vacuum, 85(7), 744-748.

[23] Wang, X. B., Song, C., Geng, K. W., Zeng, F., Pan, F. (2007). Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Applied surface science, 253(16), 6905-6909.

[24] Chang, Y. S., Chien, C. T., Chen, C. W., Chu, T. Y., Chiang, H. H., Ku, C. H., Chen, K. H. (2007). structural and optical properties of single crystal Zn1− xMgxO nanorods—experimental and theoretical studies. Journal of applied physics, 101(3), 033502–033509.

[25] Reddy, A. J., Kokila, M. K., Nagabhushana, H., Chakradhar, R. P. S., Shivakumara, C., Rao, J. L., Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of alloys and compounds, 509(17), 5349-5355.

[26] Sonawane, Y. S., Kanade, K. G., Kale, B. B., Aiyer, R. C. (2008). Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles. Materials research bulletin, 43(10), 2719-2726.

[27] Thennarasu, G., Sivasamy, A., Kavithaa, S. (2013). Synthesis, characterization and catalytic activity of nano size semiconductor metal oxide in a visible light batch slurry photoreactor. Journal of molecular liquids, 179, 18-26.

[28] Jonidi-Jafari, A., Shirzad-Siboni, M., Yang, J. K., Naimi-Joubani, M., Farrokhi, M. (2015). Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. Journal of the Taiwan institute of chemical engineers, 50, 100-107.

[29] Naimi-Joubani, M., Shirzad-Siboni, M., Yang, J. K., Gholami, M., Farzadkia, M. (2015). Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. Journal of industrial and engineering chemistry, 22, 317-323.

[30] Samarghandi, M. R., Yang, J. K., Lee, S. M., Giahi, O., Shirzad-Siboni, M. (2014). Effect of different type of organic compounds on the photocatalytic reduction of Cr (VI) in presence of ZnO nanoparticles. Desalination and water treatment, 52(7-9), 1531-1538.

[31] Shirzad-Siboni, M., Farrokhi, M., Darvishi Cheshmeh Soltani, R., Khataee, A., Tajassosi, S. (2014). Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin. Industrial and engineering chemistry research, 53(3), 1079-1087.

[32] Ahmed, S., Rasul, M. G., Brown, R., Hashib, M. A. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of environmental management, 92(3), 311-330.

[33] Elghniji, K., Hentati, O., Mlaik, N., Mahfoudh, A., Ksibi, M. (2012). Photocatalytic degradation of 4-chlorophenol under P-modified TiO 2/UV system: Kinetics, intermediates, phytotoxicity and acute toxicity. Journal of environmental sciences, 24(3), 479-487.

[34] Li, X., Hou, Y., Zhao, Q., Teng, W., Hu, X., Chen, G. (2011). Capability of novel ZnFe 2 O 4 nanotube arrays for visible-light induced degradation of 4-chlorophenol. Chemosphere, 82(4), 581-586.

[35] Zak, A. K., Wang, H. Z., Yousefi, R., Golsheikh, A. M., Ren, Z. F. (2013). Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrasonics sonochemistry, 20(1), 395-400.

[36] Tauc, J., Menth, A. (1972). States in the gap. Journal of non-crystalline solids, 8, 569-585.

[37] Abdollahi, Y., Abdullah, A. H., Zainal, Z., Yusof, N. A. (2011). Synthesis and characterization of Manganese doped ZnO nanoparticles. International journal of basic and applied sciences, 11(4), 62-69.

[38] Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. John Wiley and Sons, Ltd.

[39] Reddy, A. J., Kokila, M. K., Nagabhushana, H., Chakradhar, R. P. S., Shivakumara, C., Rao, J. L., Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of alloys and compounds, 509(17), 5349-5355.

[40] Taylor, D. W., Elliott, R. J. (1988). Optical properties of mixed crystals, North-Holland.

[41] Singhal, S., Kaur, J., Namgyal, T., Sharma, R. (2012). Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Physica B: Condensed matter, 407(8), 1223-1226.

[42] Selvam, N. C. S., Narayanan, S., Kennedy, L. J., Vijaya, J. J. (2013). Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol. Journal of environmental sciences, 25(10), 2157-2167.

[43] Pardeshi, S. K., Patil, A. B. (2009). Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. Journal of hazardous materials, 163(1), 403-409.

[44] Behnajady, M. A., Modirshahla, N., Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere, 55(1), 129-134.

[45] Rabindranathan, S., Devipriya, S., Yesodharan, S. (2003). Photocatalytic degradation of phosphamidon on semiconductor oxides. Journal of hazardous materials, 102(2), 217-229.

[46] Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge: III. Update. Journal of colloid and interface science, 298(2), 730-741.

[47] Liu, F., He, G., Zhao, M., Qu, M., Huang, L. (2011). Electrochemical behaviors of chlorophenol aqueous solutions at boron- doped diamond electrode. Open materials science journal, 5, 35-39.

[48] Zhang, D. (2010). Synthesis and characterization of ZnO-doped cupric oxides and evaluation of their photocatalytic performance under visible light. Transition metal chemistry, 35(6), 689-694.

[49] Doong, R. A., Chen, C. H., Maithreepala, R. A., sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water research, 35(12), 2873-2880.

[50] Baruah, S., Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and technology of advanced materials, 10(1), 1-18

[51] Daneshvar, N., Salari, D., Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of photochemistry and photobiology A: chemistry, 162(2), 317-322.

[52] Rabindranathan, S., Devipriya, S., Yesodharan, S. (2003). Photocatalytic degradation of phosphamidon on semiconductor oxides. Journal of hazardous materials, 102(2), 217-229.

[53] Shankar, M. V., Cheralathan, K. K., Arabindoo, B., Palanichamy, M., Murugesan, V. (2004). Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO2/Hβ. Journal of molecular catalysis A: Chemical, 223(1), 195-200.

[54] Körbahti, B. K., Rauf, M. A. (2008). Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue. Chemical engineering journal, 136(1), 25-3