Photocatalytic performance and antibacterial efficacy of green synthesized MgO nanoparticles using Cymbopogan Citratus

Document Type : Research Paper

Authors

Department of Chemistry, St. Joseph’s College (Autonomous), Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India

Abstract

The current study describes an easy, enviro safe, affordable, and time-saving method to produce Magnesium Oxide (MgO) nanoparticles employing the leaf extract of Cymbopogon citratus (Lemon grass) as a reducing and capping agent. X-ray diffraction spectroscopy (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HR-TEM), photoluminescence spectroscopy (PL), and   UV-visible studies were used to characterize the nanoparticles. SEM and TEM analysis of nano MgO revealed that agglomerated particles had nearly spherical morphologies, and the average crystalline size was 25 nm, according to the XRD investigation. The bandgap of the synthesized nanoparticles was calculated to be 3.7 eV using a Tauc plot from the UV-visible spectrum. The photocatalytic degradation of the crystal violet (CV) dye in the presence of sunlight was tested, and antibacterial activity was thoroughly investigated for both the Gram-negative (Escherichia Coli) and Gram-positive (Staphylococcus aureus) pathogens utilizing the MgO nanoparticles. The engineered MgO nanoparticles exhibited excellent utility potential for the photocatalytic degradation of the mentioned dye and antibacterial activity against the two pathogens.

Graphical Abstract

Photocatalytic performance and antibacterial efficacy of green synthesized MgO nanoparticles using Cymbopogan Citratus

Keywords

Main Subjects


[1] Mangeli, A., Mostafavi, A., Shamspur, T., Fathirad, F., Mehrabi, F. (2021). Decontamination of fenitrothion from aqueous solutions using rGO/MoS2/Fe3O4 magnetic nanosorbent: synthesis, characterization and removal application. Journal of Environmental Health Science and Engineering, 19, 1505-1511.
http//doi.org/10.1007/s40201-021-00706-w
[2] Poorsajadi, F., Sayadi, M.H., Hajiani, H., Rezaei, M.R. (2022). Synthesis of CuO/Bi2O3 nanocomposite for efficient and recycling photodegradation of methylene blue dye. International Journal of Environmental Analytical Chemistry, 102(18), 7165-7178.
http//doi.org/10.1080/03067319.2020.1826464
[3] Shah, N. S., Khan, J. A., Ala’a, H., Sayed, M., Murtaza, B., Khan, H. M. (2016). Synergistic effects of HSO5− in the gamma radiation driven process for the removal of chlorendic acid: a new alternative for water treatment. Chemical Engineering Journal, 306, 512-521.
http//doi.org/10.1016/j.cej.2016.07.031
[4] Li, W., Mu, B., Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
https://doi.org/10.1016/j.biortech.2019.01.002
[5] Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M. H., Rene, E. R., Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and EnvironmentalPprotection, 143, 138-163.
[6] Aggarwal, R., Saini, D., Singh, B., Kaushik, J., Garg, A. K., Sonkar, S. K. (2020). Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Solar Energy, 197, 326-331.
[7] Welderfael, T., Yadav, O. P., Taddesse, A. M., Kaushal, J. (2013). Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red. Bulletin of the Chemical Society of Ethiopia, 27(2), 221-232.
http//doi.org/10.4314/bcse. v27i2.7
[8] Kargar, F., Bemani, A., Sayadi, M. H., Ahmadpour, N. (2021). Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. Journal of Photochemistry and Photobiology A: Chemistry, 419, 113453.
[9] Sayadi, M. H., Ghollasimood, S., Ahmadpour, N., Homaeigohar, S. (2022). Biosynthesis of the ZnO/SnO2 nanoparticles and characterization of their photocatalytic potential for removal of organic water pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 425, 113662.
https://doi.org/10.1016/j.jphotochem.2021.113662
[10] Fathirad, F., Ziaadini, F., Mostafavi, A., Shamspur, T. (2021). Three-layer magnetic nanocomposite containing semiconductor nanoparticles as catalyst for dye removal from water solutions under visible light. Iranian Journal of Chemistry and Chemical Engineering, 40(6), 1749-1756.
[11] Kumari, V., Mittal, A., Jindal, J., Yadav, S., Kumar, N. (2019). S-, N-and C-doped ZnO as semiconductor photocatalysts: A review. Frontiers of Materials Science, 13, 1-22.
https://doi.org/10.1007/s11706-019-0453-4
[12] Khan, M. I., Akhtar, M. N., Ashraf, N., Najeeb, J., Munir, H., Awan, T. I., Kabli, M. R. (2020). Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Applied Nanoscience, 10, 2351-2364.
https://doi.org/10.1007/s13204-020-01414-x
[13] Balakrishnan, G., Velavan, R., Batoo, K. M., Raslan, E. H. (2020). Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results in Physics, 16, 103013.
https://doi.org/10.1016/j.rinp.2020.103013
[14] Mageshwari, K., Mali, S. S., Sathyamoorthy, R., Patil, P. S. (2013). Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technology, 249, 456-462.
[15] Ratnam, M.V., Karthikeyan, C., Rao, K.N. Meena, V. (2020). Magnesium oxide nanoparticles for effective photocatalytic degradation of methyl red dye in aqueous solutions: Optimization studies using response surface methodology. Materials Today: Proceedings, 26, 2308-2313.
[16] Pachiyappan, J., Gnanansundaram, N., Sivamani, S.,  Sankari, N.P.B.P.,  Senthilnathan, N., Kerga, G.A. (2022). Preparation and Characterization of Magnesium Oxide Nanoparticles and Its Application for Photocatalytic Removal of Rhodamine B and Methylene Blue Dyes. Journal of Nanomaterials, 6484573.
https://doi.org/10.1155/2022/6484573
[17] Pathania, D., Kumar, S., Thakur, P., Chaudhary, V., Kaushik, A., Varma, R. S., Khosla, A. (2022). Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies. Scientific Reports, 12(1), 11431.
https://doi.org/10.1038/s41598-022-14984-3
[18] Gold, K., Slay, B., Knackstedt, M., Gaharwar, A. K. (2018). Antimicrobial activity of metal and metal‐oxide based nanoparticles. Advanced Therapeutics, 1(3), 1700033.
https://doi.org/10.1002/adtp.201700033
[19] S. Abinaya, Helen P. Kavitha, M. Prakash, A. Muthukrishnaraj. (2021). Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustainable Chemistry and Pharmacy,19,100368.
https://doi.org/10.1016/j.scp.2020.100368
[20] Pathania, D., Kumar, S., Thakur, P., Chaudhary, V., Kaushik, A., Varma, R. S., Khosla, A. (2022). Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies. Scientific Reports, 12(1), 11431.
https://doi.org/10.1038/s41598-022-14984-3
[21] Umaralikhan, L., Jamal Mohamed Jaffar, M. (2018). Green synthesis of MgO nanoparticles and its antibacterial activity. Iranian Journal of Science and Technology, Transactions A: Science, 42, 477-485.
http://dx.doi.org/10.1007/s40995-016-0041-8
[22] Vergheese, M., Vishal, S. K. (2018). Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. Journal of Pharmacognosy and Phytochemistry, 7(3), 1193-1200. https://www.phytojournal.com/archives/2018.v7.i3.4326.  
[23] John Sushma, N., Prathyusha, D., Swathi, G., Madhavi, T., Deva Prasad Raju, B., Mallikarjuna, K., Kim, H. S. (2016). Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Applied Nanoscience, 6, 437-444.
http://dx.doi.org/10.1007/s13204-015-0455-1
[24] Khan, M. I., Akhtar, M. N., Ashraf, N., Najeeb, J., Munir, H., Awan, T. I., Kabli, M. R. (2020). Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Applied Nanoscience, 10, 2351-2364.
http://dx.doi.org/10.1007/s13204-020-01414-x
[25] Ahmad, W., Khan, A., Ali, N., Khan, S., Uddin, S., Malik, S., Bilal, M. (2021). Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environmental Science and Pollution Research, 28, 8074-8087.
https://doi.org/10.1007/s11356-020-10898-7
[26] Somanathan, T., Krishna, V. M., Saravanan, V., Kumar, R., Kumar, R. (2016). MgO nanoparticles for effective uptake and release of doxorubicin drug: pH sensitive controlled drug release. Journal of Nanoscience and Nanotechnology, 16(9), 9421-9431.
[27] Kumar, N., Sanyal, D., Sundaresan, A. (2009). Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy. Chemical Physics Letters, 477(4-6), 360-364.
[28] Lu, H. B., Liao, L., Li, H., Tian, Y., Wang, D. F., Li, J. C., Wu, Y. (2008). MgO nanobelts using a reactive and auto-removed ZnO nanobelt template. Solid State Communications, 147(1-2), 57-60.
[29] Jin, C., Kim, H., An, S., Lee, C. (2012). Photoluminescence properties of Sn-embedded MgO nanorods with different morphologies synthesized by a single thermal evaporation process. Chemical Engineering Journal, 198, 420-425.
https://doi.org/10.1016/j.cej.2012.05.096
[30] Selvam, N. C. S., Kumar, R. T., Kennedy, L. J., Vijaya, J. J. (2011). Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. Journal of Alloys and Compounds, 509(41), 9809-9815.
[31] Niu, H., Yang, Q., Tang, K., Xie, Y. (2006). Self-assembly of porous MgO nanoparticles into coral-like microcrystals. Scripta Materialia, 54(10), 1791-1796.
[32] Kim, H. W., Shim, S. H. (2006). Growth of MgO nanowires assisted by the annealing treatment of Au-coated substrates. Chemical Physics Letters, 422(1-3), 165-169.
[33] Abbas, H. A., Nasr, R. A., Abu-Zurayk, R., Al Bawab, A., Jamil, T. S. (2020). Decolourization of crystal violet using nano-sized novel fluorite structure Ga2Zr2− x W x O7 photocatalyst under visible light irradiation. Royal Society Open Science, 7(3), 191632.
[34] Sahoo, C., Gupta, A. K., Pal, A. (2005). Photocatalytic degradation of Crystal Violet (CI Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189-196.
[35] Mohamed, S. K., Hegazy, S. H., Abdelwahab, N. A., Ramadan, A. M. (2018). Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. International Journal of Biological Macromolecules, 108, 1185-1198.
https://doi.org/10.1016/j.ijbiomac.2017.11.028
[36] Lahmar, H., Benamira, M., Douafer, S., Akika, F. Z., Hamdi, M., Avramova, I., Trari, M. (2020). Photocatalytic degradation of crystal violet dye on the novel CuCr2O4/SnO2 hetero-system under sunlight. Optik, 219, 165042.
https://doi.org/10.1016/j.ijleo.2020.165042
[37] Gold, K., Slay, B., Knackstedt, M., Gaharwar, A. K. (2018). Antimicrobial activity of metal and metal‐oxide based nanoparticles. Advanced Therapeutics, 1(3), 1700033.
https://doi.org/10.1002/adtp.201700033