A review on water disinfection with plant products-

Document Type : Review Paper

Authors

Chemical Engineering Department University of Engineering and Technology, Lahore

Abstract

Background
Conventional techniques for water disinfection are fraught with issues like personnel exposure to damaging radiation and formation of harmful and carcinogenic disinfection byproducts. There are difficulties related to transportation and handling, and expensive capital and working costs also are involved like costs associated with on-site generation of disinfectants. There is a dire need for newer disinfection technologies that are environment and health friendly.
Scope and benefits
This article reviews the use of natural disinfectants derived from plants to enhance the quality of water. Researchers have utilized herbal extracts, phytochemicals, and phytochemical-metal complexes for the disinfection of water. Various factors for these chemicals like efficacy, toxicity, cost, and water solubility have been discussed and some useful phytochemical disinfectants are also identified. These disinfection methods particularly when using only pure phytochemicals are generally thought to be free from the deleterious effects associated with chlorination and other conventional technologies. Inherently, chlorinated and other harmful disinfection byproducts are not formed.
Key findings and conclusions
In various studies eugenol, thymol and extracts of Ocimum sanctum and Azadirachta indica have been utilized with fairly effective disinfection capabilities. The significant antimicrobial effects of allicin, berteroin, sanguinarine, and thymol are reflected from their very low minimum inhibitory concentration values. Even so, presently the efficiency of phytochemicals is not comparable to conventional disinfectants. The use of phytochemical metal complexes is, however, a plausible option that might be investigated further. The metal complexes because of their greater water solubility than pure phytochemicals result in improved disinfection efficiency. Notable among those are flavonoid-metal complexes that should be considered further for use in water disinfection. It is also concluded that phytochemicals may be added to water that has also been disinfected with some other commonly-used technology. A way to do this may be to design a fixed bed tower of phyto-disinfectant through which water should pass.       







Graphical Abstract

A review on water disinfection with plant products-

Keywords

Main Subjects


[2] Pohl, C. (2017). Use of Ion Chromatography for Monitoring Ionic Contaminants in Water. In Chemistry and Water (pp. 353-391). Elsevier.
[3] Richardson, S. D. (2011). Disinfection By-Products: Formation and Occurrence in Drinking Water⋆⋆ This article has been reviewed in accordance with the US EPA's peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US EPA. Encyclopedia of Environmental Health, 2, 110-136.
[4] Davis, M. L., Cornwell, D. A. (2008). Introduction to environmental engineering. McGraw-Hill.
[5] Thakur, M., Singh, K., Khedkar, R. (2020). Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In Functional and preservative properties of phytochemicals (pp. 341-361). Academic Press.
[6] Adeeyo, A. O., Edokpayi, J. N., Alabi, M. A., Msagati, T. A., Odiyo, J. O. (2021). Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. Clinical Phytoscience, 7(1), 1-16.
https://doi.org/10.1186/s40816-021-00258-4
[7] Pandey, A., Karanwal, V. (2011). A study of extract optimization and effect of metal ions on antibacterial properties of Argemone mexicana. Asian Journal of Plant Science and Research.
[8] Sharma, A. K., Kaur, J., Sharma, A. R. (2017). Microbicidal evaluation of plant extracts-Iron metal ions complex. Asian Journal of Pharmaceutical and Clinical Research, 10(10), 263-267.
https://doi.org/10.22159/ajpcr.2017.v10i10.19687
[9] Khvan, A. M., Kristallovich, E. L., Abduazimov, K. A. (2001). Complexation of caffeic and ferulic acids by transition-metal ions. Chemistry of Natural Compounds, 37, 72-75.
[10] Al-Bayati, R. I. H., Mahdi, F. R., Al-Amiery, A. A. H. (2011). Synthesis, spectroscopic and antimicrobial studies of transition metal complexes of N-amino quinolone derivatives. British Journal of Pharmacology and Toxicology, 2(1), 5-11.
https://doi.org/10.3390/ecsoc-14-00435
[11] Grazul, M., Budzisz, E. (2009). Biological activity of metal ions complexes of chromones, coumarins and flavones. Coordination Chemistry Reviews, 253(21-22), 2588-2598.
https://doi.org/10.1016/j.ccr.2009.06.015
[12] Hassan, M. N., Vivek, S., Unnisa, S. A. (2012). Purification of turbid water with Pisum sativum seeds and solar energy. International Journal of Green and Herbal Chemistry, 1(3), 296-301.
[13] Malešev, D., Kuntić, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian Chemical Society, 72(10), 921-939.
https://doi.org/10.2298/jsc0710921m
[14] Capasso, L. (1998). 5300 years ago, the Ice Man used natural laxatives and antibiotics. The Lancet, 352(9143), 1864.
https://doi.org/10.1016/S0140-6736(05)79939-6
[15] Merck KGaA, Plant Profiler 2021. http://www.sigmaaldrich.com/life-science/nutrition-research/learning-center/plant-profiler.html (accessed August 11, 2019).
[16] Royal Botanic Gardens, Kew 2023. www.kew.org/ (accessed February 22, 2023).
[17] Dr. Duke’s Phytochemical and Ethnobotanical Databases. US Department of Agriculture, Agricultural Research Service 1992-2016 2021. https://doi.org/http://dx.doi.org/10.15482/USDA.ADC/1239279
[18] Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50, 444-457.
https://doi.org/10.1007/s10593-014-1496-1
[19] Lagunin, A., Zakharov, A., Filimonov, D., Poroikov, V. (2011). QSAR modelling of rat acute toxicity on the basis of PASS prediction. Molecular Informatics, 30(2‐3), 241-250.
https://doi.org/10.1002/minf.201000151
[20] Warnke, P. H., Lott, A. J., Sherry, E., Wiltfang, J., Podschun, R. (2013). The ongoing battle against multi-resistant strains: in-vitro inhibition of hospital-acquired MRSA, VRE, Pseudomonas, ESBL E. coli and Klebsiella species in the presence of plant-derived antiseptic oils. Journal of Cranio-Maxillofacial Surgery, 41(4), 321-326.
https://doi.org/10.1016/j.jcms.2012.10.012
[21] Tornuk, F., Cankurt, H., Ozturk, I., Sagdic, O., Bayram, O., Yetim, H. (2011). Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157: H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology, 148(1), 30-35.
https://doi.org/10.1016/j.ijfoodmicro.2011.04.022
[22] Monte, J., Abreu, A. C., Borges, A., Simões, L. C., Simões, M. (2014). Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens, 3(2), 473-498.
https://doi.org/10.3390/pathogens3020473
[23] Ashbolt, N. J., Grabow, W., Snozzi, M. (2015). Indicators of microbial water quality. Water Quality: Guidelines, Standards and Health. In Bartram (Ed.), Routledge Handbook of Water and Health. (pp. 289-316) Routledge.
https://doi.org/10.4324/9781315693606
[24] Hageskal, G., Lima, N., Skaar, I. (2009). The study of fungi in drinking water. Mycological Research, 113(2), 165-172.
https://doi.org/10.1016/j.mycres.2008.10.002
[25] Hijnen WA, Beerendonk EF, Medema GJ. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Research, 40(1):3-22.
https://doi.org/10.1016/j.watres.2005.10.030
[26] Lutgen, P., Michels, B. (2008). Bactericidal properties of Artemisia annua tea and dosimetry of artemisinin in water by fluorescence under UV light. Revue Technique Luxembourgeoise, 2, 73-78.
[27] Winward, G. P., Avery, L. M., Stephenson, T., Jefferson, B. (2008). Essential oils for the disinfection of grey water. Water Research, 42(8-9), 2260-2268.
https://doi.org/10.1016/j.watres.2007.12.004.
[28] Ahmed, T., Kanwal, R., Hassan, M., Ayub, N. (2009). Assessment of antibacterial activity of Colebrookia oppositifolia against waterborne pathogens isolated from drinking water of the Pothwar region in Pakistan. Human and Ecological Risk Assessment, 15(2), 401-415.
       https://doi.org/10.1080/10807030902761510
[29] Shaheed, A., Templeton, M. R., Matthews, R. L., Tripathi, S. K., Bhattarai, K. (2009). Disinfection of waterborne coliform bacteria using Luffa cylindrica fruit and seed extracts. Environmental Technology, 30(13), 1435-1440.
https://doi.org/10.1080/09593330903193485.
[30] Harding, A. S., Schwab, K. J. (2012). Using limes and synthetic psoralens to enhance solar disinfection of water (SODIS): a laboratory evaluation with norovirus, Escherichia coli, and MS2. The American Journal of Tropical Medicine and Hygiene, 86(4), 566.
https://doi.org/10.4269/ajtmh.2012.11-0370
[31] Harikumar, P. S., Manjusha, C. M. (2013). Study on the antibacterial activity of selected natural herbs and their application in water treatment. Drinking Water Engineering and Science Discussions, 6(2), 199-231.
https://doi.org/10.5194/dwesd-6-199-2013
[32] Ramavandi, B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources and Industry, 6, 36-50.
https://doi.org/10.1016/j.wri.2014.07.001
[33] Pandit, A. B., Kumar, J. K. (2015). Clean water for developing countries. Annual Review of Chemical and Biomolecular Engineering, 6, 217-246.
https://doi.org/10.1146/annurev-chembioeng-061114-123432
[34] Kingsely, O., Nnaji, J., Ugwu, B. (2017). Biodisinfection and coagulant properties of mixed Garcinia kola and Carica papaya seeds extract for water treatment. Chemical Science International Journal, 19(3), 1-9.
https://doi.org/10.9734/CSJI/2017/34041
[35] Douhri, H., Raissouni, I., Amajoud, N., Belmehdi, O., Benchakhtir, M., Tazi, S., Douhri, B. (2017). Antibacterial effect of ethanolic extracts of Moroccan plant against Escherichia coli. Journal of Materials and Environmental Sciences, 8(12), 4408-4414.
[36] Dhivya SM, Kalaichelvi K. (2017). Phytochemical studies and gas chromatography-mass spectrometry analysis of Sarcostemma brevistigma. Wight and Arn. Asian Journal of Pharmaceutical and Clinical Research, 10:462–6.
https://doi.org/10.22159/ajpcr.2017.v10i3.16538.
[37] Okunlola, B. M., Ijah, U. J. J., Yisa, J., Abioye, O. P. (2019). Phytochemicals and phyto-disinfectant properties of citrus species (Citrus limon, Citrus aurantifolia and Citrus sinensis) for pond water purification. GSC Biological and Pharmaceutical Sciences, 8(2), 034-044.
[38] Adeeyo, A. O., Odelade, K. A., Msagati, T. A., Odiyo, J. O. (2020). Antimicrobial potencies of selected native African herbs against water microbes. Journal of King Saud University-Science, 32(4), 2349-2357.
https://doi.org/10.1016/j.jksus.2020.03.013
[39] Ahmed, T., Kanwal, R., Hassan, M., Ayub, N., Scholz, M., McMinn, W. (2010, September). Coagulation and disinfection in water treatment using Moringa. In proceedings of the institution of civil engineers-water management (Vol. 163, No. 8, pp. 381-388). Thomas Telford Ltd.
[40] Adejumo, O., Chukwujekw, C., Kolapo, A., Olubamiwa, A. (2012). Chemical analysis and investigative study on water disinfecting properties of Moringa oleifera (Moringaceae) leaf. Pharmacologia, 3(10), 530-534.
https://doi.org/10.5567/pharmacologia.2012.530.534
[41] Yongabi, K. A. (2013). A sustainable low-cost Phyto disinfectant-sand filter alternative for water purification (Doctoral dissertation).
[42] Yongabi, K. A., Lewis, D. M., Harris, P. L. (2012). Natural materials for sustainable water pollution management. Prof. Nuray Balkis (ed.), Water Pollution, 12, 157-188.
https://doi.org/10.5772/31740
[43] Lea, M. (2010). Bioremediation of turbid surface water using seed extract from Moringa oleifera Lam.(drumstick) tree. Current Protocols in Microbiology, 16(1), 1G-2.
https://doi.org/10.1002/9780471729259.mc01g02s33
[44] Baptista, A. T. A., Silva, M. O., Gomes, R. G., Bergamasco, R., Vieira, M. F., Vieira, A. M. S. (2017). Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separation and Purification Technology, 180, 114-124.
https://doi.org/https://doi.org/10.1016/j.seppur.2017.02.040
[45] Keogh, M. B., Elmusharaf, K., Borde, P., McGuigan, K. G. (2017). Evaluation of the natural coagulant Moringa oleifera as a pretreatment for SODIS in contaminated turbid water. Solar Energy, 158, 448-454.
https://doi.org/10.1016/j.solener.2017.10.010
[46] Luwesi, C. N., Ndombe, F. M., Eyulanki, D. M., Fundu, T. M., Nakweti, R. K., Zola, R. L. (2019). Evaluation of the Efficacy of Phytochemical Treatment of Surface Waters Based on Powder Extracts of Almond Seeds Moringa Oleifera Lam in kenge, DRC. Biomedical Journal of Scientific and Technical Research, 18(1), 13287-13299.
https://doi.org/10.26717/BJSTR.2019.18.003101
[47] Wali H. (2020) Potentiality of a Few Selected Phytochemicals in Drinking Water Disinfection. (Doctoral Dissertation), University of Engineering and Technology, Lahore.
[48] Leporatti, M. L., Ivancheva, S. (2003). Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. Journal of Ethnopharmacology, 87(2-3), 123-142.
https://doi.org/10.1016/S0378-8741(03)00047-3
[49] Ben Abdesslem, S., Boulares, M., Elbaz, M., Ben Moussa, O., St‐Gelais, A., Hassouna, M., Aider, M. (2021). Chemical composition and biological activities of fennel (Foeniculum vulgare Mill.) essential oils and ethanolic extracts of conventional and organic seeds. Journal of Food Processing and Preservation, 45(1), e15034.
https://doi.org/10.1111/jfpp.15034
[50] Beigi, M., Torki-Harchegani, M., Ghasemi Pirbalouti, A. (2018). Quantity and chemical composition of essential oil of peppermint (Mentha× piperita L.) leaves under different drying methods. International Journal of Food Properties, 21(1), 267-276.
https://doi.org/10.1080/10942912.2018.1453839
[51] Al-Dhahli, A. S., Al-Hassani, F. A., Alarjani, K. M., Yehia, H. M., Al Lawati, W. M., Azmi, S. N. H., Khan, S. A. (2020). Essential oil from the rhizomes of the Saudi and Chinese Zingiber officinale cultivars: Comparison of chemical composition, antibacterial and molecular docking studies. Journal of King Saud University-Science, 32(8), 3343-3350.
https://doi.org/10.1016/j.jksus.2020.09.020
[52] Zhang, Y. J., Gan, R. Y., Li, S., Zhou, Y., Li, A. N., Xu, D. P., Li, H. B. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138-21156.
https://doi.org/10.3390/molecules201219753
[53] Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474.
https://doi.org/10.3390/ph6121451
[54] Solórzano-Santos, F., Miranda-Novales, M. G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 136-141.
https://doi.org/10.1016/j.copbio.2011.08.005
[55] Roozban, N., Abbasi, S., Ghazizadeh, M. (2017). The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles. Journal of materials science: Materials in Electronics, 28, 7343-7352.
https://doi.org/10.1016/j.saa.2013.11.089
[56] Campos, F. M., Couto, J. A., Hogg, T. A. (2003). Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Journal of Applied Microbiology, 94(2), 167-174.
https://doi.org/10.1046/j.1365-2672.2003.01801.x.
[57] Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582.
https://doi.org/0893-8512/99/$04.00+0
[58] Cushnie, T. T., Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356.
https://doi.org/10.1016/j.ijantimicag.2005.09.002
[59] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
https://doi.org/http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022
[60] Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474-2478.
https://doi.org/10.1128/AAC.49.6.2474-2478.2005
[61] Simoes, M., Bennett, R. N., Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 26(6), 746-757.
https://doi.org/10.1039/B821648G
[62] Wang, L. H., Zhang, Z. H., Zeng, X. A., Gong, D. M., Wang, M. S. (2017). Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: membrane damage and genomic DNA binding. Analytical and Bioanalytical Chemistry, 409, 1615-1625.
https://doi.org/10.1007/s00216-016-0102-z
[63] Malheiro, J., Gomes, I., Borges, A., Bastos, M. M. S. M., Maillard, J. Y., Borges, F., Simões, M. (2016). Phytochemical profiling as a solution to palliate disinfectant limitations. Biofouling, 32(9), 1007-1016.
https://doi.org/10.1080/08927014.2016.1220550
[64] Saha, A. K. (2018). U.S. Patent No. 10,059,605. Washington, DC: U.S. Patent and Trademark Office.
[65] Pervaiz S. (2018). Effect of phytochemicals under variable disinfection conditions on heterotrophic bacteria in canal water. (MSc Dissertation), University of Engineering and Technology, Lahore.
[66] Wali, H., Zafar, M. (2019). Selection Process of Phytochemicals and Efficacy of Thymol, Eugenol and Calcium Ferulate on Heterotrophic Plate Count Bacteria in Water. Journal of the Chemical Society of Pakistan, 41(2), 345-345.
https://doi.org/10.52568/000734/jcsp/41.02.2019
[67] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373-D1380.
[68] Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., Capita, R. (2021). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology, 11(1), 46.
[69] Khan, S., Beattie, T. K., Knapp, C. W. (2017). The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria. Ecotoxicology, 26, 283-292.
[70] Köhler, A. T., Rodloff, A. C., Labahn, M., Reinhardt, M., Truyen, U., Speck, S. (2018). Efficacy of sodium hypochlorite against multidrug-resistant Gram-negative bacteria. Journal of Hospital Infection, 100(3), e40-e46.
https://doi.org/10.1016/j.jhin.2018.07.017
[71] Basile, A., Sorbo, S., Spadaro, V., Bruno, M., Maggio, A., Faraone, N., Rosselli, S. (2009). Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 14(3), 939-952.
https://doi.org/10.3390/molecules14030939
[72] O'Gara, E. A., Hill, D. J., Maslin, D. J. (2000). Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Applied and Environmental Microbiology, 66(5), 2269-2273.
https://doi.org/10.1128/AEM.66.5.2269-2273.2000
[73] Zorić, N., Kosalec, I., Tomić, S., Bobnjarić, I., Jug, M., Vlainić, T., Vlainić, J. (2017). Membrane of Candida albicans as a target of berberine. BMC Complementary and Alternative Medicine, 17(1), 1-10.
https://doi.org/10.1186/s12906-017-1773-5.
[74] Althunibat, O. Y., Qaralleh, H., Ahmed Al-Dalin, S. Y., Abboud, M., Khleifat, K., Majali, I. S., Jaafraa, A. (2016). Effect of Thymol and Carvacrol, the Major Components of Thymus capitatus on the Growth of Pseudomonas aeruginosa. Journal of Pure and Applied Microbiology, 10(1).
[75] Haristoy, X., Fahey, J. W., Scholtus, I., Lozniewski, A. (2005). Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Medica, 71(04), 326-330.
[76] Pérez‐Giraldo, C., Cruz‐Villalón, G., Sánchez‐Silos, R., Martínez‐Rubio, R., Blanco, M. T., Gómez‐García, A. C. (2003). In vitro activity of allicin against Staphylococcus epidermidis and influence of subinhibitory concentrations on biofilm formation. Journal of Applied Microbiology, 95(4), 709-711.
[77] Chauhan, A. K., Kang, S. C. (2014). Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Research in Microbiology, 165(7), 559-565.
https://doi.org/10.1016/j.resmic.2014.07.001
[78] Liu, H., Mou, Y., Zhao, J., Wang, J., Zhou, L., Wang, M., Yang, F. (2010). Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules, 15(11), 7933-7945.
https://doi.org/10.3390/molecules15117933
[79] Ali, S. M., Khan, A. A., Ahmed, I., Musaddiq, M., Ahmed, K. S., Polasa, H., Ahmed, N. (2005). Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Annals of Clinical Microbiology and Antimicrobials, 4, 1-7.
https://doi.org/10.1186/1476-0711-4-20
[80] Andrade-Ochoa, S., Nevárez-Moorillón, G. V., Sánchez-Torres, L. E., Villanueva-García, M., Sánchez-Ramírez, B. E., Rodríguez-Valdez, L. M., Rivera-Chavira, B. E. (2015). Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complementary and Alternative Medicine, 15, 1-11.
https://doi.org/10.1186/s12906-015-0858-2
[81] Liu, X. L., Hao, Y. Q., Jin, L., Xu, Z. J., McAllister, T. A., Wang, Y. (2013). Anti-Escherichia coli O157: H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules, 18(2), 2183-2199.
https://doi.org/10.3390/molecules18022183
[82] Chin, Y. P., Tsui, K. C., Chen, M. C., Wang, C. Y., Yang, C. Y., Lin, Y. L. (2012). Bactericidal activity of soymilk fermentation broth by in vitro and animal models. Journal of Medicinal Food, 15(6), 520-526.
https://doi.org/10.1089/jmf.2011.1918
[83] Lee, P., Tan, K. S. (2015). Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Archives of Oral Biology, 60(3), 393-399.
https://doi.org/10.1016/j.archoralbio.2014.11.014
[84] Togashi, N., Hamashima, H., Shiraishi, A., Inoue, Y., Takano, A. (2010). Antibacterial activities against Staphylococcus aureus of terpene alcohols with aliphatic carbon chains. Journal of Essential Oil Research, 22(3), 263-269.
https://doi.org/10.1080/10412905.2010.9700321
[85] Misra, A. K., Gouda, P. (2014). Phamacological study of alkaloid hirsutine-3-o-glycopyranoside isolated from roots of Cocullus hirsutus. International Journal Pharmacognosy Phytochemical Research, 6(2), 317-9.
[86] Ohta, R., Yamada, N., Kaneko, H., Ishikawa, K., Fukuda, H., Fujino, T., Suzuki, A. (1999). In vitro inhibition of the growth of Helicobacter pylori by oil-macerated garlic constituents. Antimicrobial Agents and Chemotherapy, 43(7), 1811.
https://doi.org/10.1128/aac.43.7.1811
[87] Hamoud, R., Reichling, J., Wink, M. (2014). Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria. Drug Metabolism Letters, 8(2), 119-128.
https://doi.org/10.2174/187231280802150212100742
[88] Cunha, W. R., de Matos, G. X., Souza, M. G. M., Tozatti, M. G., Andrade e Silva, M. L., Martins, C. H., Da Silva Filho, A. A. (2010). Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives. Pharmaceutical Biology, 48(2), 166-169.
https://doi.org/10.3109/13880200903062648
[89] Ghaima, K. K., Rasheed, S. F., Ahmed, E. F. (2013). Antibiofilm, antibacterial and antioxidant activities of water extract of Calendula officinalis flowers. International Journal of Biological and Pharmaceutical Research, 4(7), 465-470.
[90] Borges, A., Ferreira, C., Saavedra, M. J., Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19(4), 256-265.
https://doi.org/10.1089/mdr.2012.0244
[91] Gomes, I. B., Malheiro, J., Mergulhão, F., Maillard, J. Y., Simões, M. (2016). Comparison of the efficacy of natural-based and synthetic biocides to disinfect silicone and stainless-steel surfaces. FEMS Pathogens and Disease, 74(4), ftw014.
https://doi.org/10.1093/femspd/ftw014
[92] Li, C. H., Chen, X., Landis, R. F., Geng, Y., Makabenta, J. M., Lemnios, W., Rotello, V. M. (2019). Phytochemical-based nanocomposites for the treatment of bacterial biofilms. ACS Infectious Diseases, 5(9), 1590-1596.
https://doi.org/10.1021/acsinfecdis.9b00134
[93] Mukhopadhyay, M. K., Banerjee, P., Nath, D. (2012). Phytochemicals–biomolecules for prevention and treatment of human diseases-a review. International Journal of Scientific and Engineering Research, 3(7), 1-32.
[94] NIOSH. Cincinnati, Ohio: 1976
[95] Gosselin, R. E., Smith, R. P., Hodge, H. C., Braddock, J. E. (1976). Clinical toxicology of commercial products. Baltimore: Williams and Wilkins.
[96] Gosselin, R. E., Smith, R. P., Hodge, H. C., Braddock, J. E. (1984). Clinical toxicology of commercial products (Vol. 1085). Baltimore: Williams and Wilkins.
[97] Williams, G. M., DiNovi, M., Mattia, A., Renwick, A. G. (2011). Aliphatic acyclic and alicyclic terpenoid tertiary alcohols and structurally related substances (addendum). WHO Food Additives Series: 64, 91.
[98] Burdock GA, editor. Fenaroli’s Handbook of Flavor Ingredients. 5th ed. Boca Raton, FL: 2005.https://doi.org/10.1201/9780429292897
[99] IARC and WHO Monographs. Geneva: World Health Organization, International Agency for Research on Cancer; n.d.
[100] Gosselin, R.E., R.P. Smith, H.C. Hodge. Clinical Toxicology of Commercial Products. 5th ed. Baltimore: Williams and Wilkins, 1984., pp. II- 190 (catechol), 258 (menthol).
[101] Gosselin, R.E., R.P. Smith, H.C. Hodge. Clinical Toxicology of Commercial Products. 5th ed. Baltimore: Williams and Wilkins, 1984., pp. II-189 (thymol), 257 (eugenol).
[102] Gillani SR. Personal Communication 2015. Prof. Dr. Syeda Rubina Gilani (uet.edu.pk)
[103] Siddique Z. Personal Communication 2014.
[104] Zhang, Z., Pang, X., Xuewu, D., Ji, Z., Jiang, Y. (2005). Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chemistry, 90(1-2), 47-52.
https://doi.org/10.1016/j.foodchem.2004.03.023
[105] Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1).
https://doi.org/10.4314/ajtcam.v8i1.60483
[106] Van Lente, F., Gatautis, V. (1998). Cost-efficient use of gas chromatography–mass spectrometry: a “piggyback” method for analysis of gabapentin. Clinical Chemistry, 44(9), 2044-2045.
https://doi.org/10.1093/clinchem/44.9.2044
[107] Kumar, M. S., Pandita, N. S., Pal, A. K. (2012). LC-MS/MS as a tool for identification of bioactive compounds in marine sponge Spongosorites halichondriodes (Dendy 1905). Toxicon, 60(6), 1135-1147.
https://doi.org/10.1016/j.toxicon.2012.07.011
[108] Zhang, Q. W., Lin, L. G., Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1-26.
https://doi.org/10.1186/s13020-018-0177-x
[109] Soni, K., Naved, T. (2010). HPTLC-Its applications in herbal drug industry. The Pharma Review, 4, 112-117.
[110] Adeeyo, A. O., Edokpayi, J. N., Alabi, M. A., Msagati, T. A., Odiyo, J. O. (2021). Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. Clinical Phytoscience, 7(1), 1-16.
https://doi.org/10.1186/s40816-021-00258-4
[111] Mihalov, J. J., Marderosian, A. D., Pierce, J. C. (2000). DNA identification of commercial ginseng samples. Journal of Agricultural and Food Chemistry, 48(8), 3744-3752.
https://doi.org/10.1021/jf000011b
[112] Laboukhi-Khorsi, S., Daoud, K., & Chemat, S. (2017). Efficient solvent selection approach for high solubility of active phytochemicals: application for the extraction of an antimalarial compound from medicinal plants. ACS Sustainable Chemistry and Engineering, 5(5), 4332-4339.
https://doi.org/10.1021/acssuschemeng.7b00384
[113] U.S. National Library of Medicine. 2021. https://chem.nlm.nih.gov/chemidplus/ (accessed July 28, 2019).
[114] Weinberg, E. D. (1957). The mutual effects of antimicrobial compounds and metallic cations. Bacteriological Reviews, 21(1), 46-68.
https://doi.org/10.1128/br.21.1.46-68.1957
[115] opacz, M., Woznicka, E., Gruszecka, J. (2005). Antibacterial activity of morin and its complexes with La (III), Gd (III) and Lu (III) ions. Acta Poloniae Pharmaceutica, 62(1), 65-67.
[116] Bravo, A., Anacona, J. R. (2001). Metal complexes of the flavonoid quercetin: antibacterial properties. Transition Metal Chemistry, 26, 20-23.
https://doi.org/10.1023/a:1007128325639
[117] Selvaraj, S., Krishnaswamy, S., Devashya, V., Sethuraman, S., Krishnan, U. M. (2012). Synthesis, characterization and DNA binding properties of rutin–iron complex. RSC Advances, 2(7), 2797-2802.
https://doi.org/10.1039/c2ra01319c
[118] Hirai, I., Okuno, M., Katsuma, R., Arita, N., Tachibana, M., Yamamoto, Y. (2010). Characterisation of anti‐Staphylococcus aureus activity of quercetin. International Journal of Food Science and Technology, 45(6), 1250-1254.
https://doi.org/10.1111/j.1365-2621.2010.02267.x
[119] Selvaraj, S., Krishnaswamy, S., Devashya, V., Sethuraman, S., Krishnan, U. M. (2014). Flavonoid–metal ion complexes: a novel class of therapeutic agents. Medicinal Research Reviews, 34(4), 677-702.
https://doi.org/10.1002/med.21301
[120] Khater, M., Ravishankar, D., Greco, F., Osborn, H. M. (2019). Metal complexes of flavonoids: Their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Medicinal Chemistry, 11(21), 2845-2867.
https://doi.org/10.4155/fmc-2019-0237
[121] Srivastava, T., Mishra, S. K., Tiwari, O. P., Sonkar, A. K., Tiwari, K. N., Kumar, P., Dwivedi, A. K. (2020). Synthesis, characterization, antimicrobial and cytotoxicity evaluation of quaternary cadmium (II)-quercetin complexes with 1, 10-phenanthroline or 2, 2’-bipyridine ligands. Biotechnology and Biotechnological Equipment, 34(1), 999-1012.
https://doi.org/10.1080/13102818.2020.1806732
[122] National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 6224, Sodium Citrate. https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-Citrate (retrieved November 7, 2023).
[123] U.S. National Library of Medicine. 2021. https://toxnet.nlm.nih.gov/ (accessed July 28, 2019).
[124] Hertog M et al. Dietary flavonoids and cancer risk in the Zutphen elderly study. Nutrition and Cancer 1994; 22(2):175–84.
https://doi.org/10.1080/01635589409514342
[125] Kamel, A. S., Mohamed, A. F., Rabie, M. A., Elsherbiny, M. E., Ahmed, K. A., Khattab, M. M., Abdelkader, N. F. (2022). Experimental evidence for diiodohydroxyquinoline-induced neurotoxicity: characterization of age and gender as predisposing factors. Pharmaceuticals, 15(2), 251.
https://doi.org/10.1016/0013-9351(78)90068-3
[126] Oh, S. M., Kim, Y. P., Chung, K. H. (2006). Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Archives of Pharmacal Research, 29, 354-362.
https://doi.org/10.1007/bf02968584